Fox–Wright function

In mathematics, the Fox–Wright function (also known as Fox–Wright Psi function or just Wright function, not to be confused with Wright Omega function) is a generalisation of the generalised hypergeometric function pFq(z) based on an idea of E. Maitland Wright (1935):

{}_p\Psi_q \left[\begin{matrix} 
( a_1 , A_1 ) & ( a_2 , A_2 ) & \ldots & ( a_p , A_p ) \\ 
( b_1 , B_1 ) & ( b_2 , B_2 ) & \ldots & ( b_q , B_q ) \end{matrix} 
; z \right]
=
\sum_{n=0}^\infty \frac{\Gamma( a_1 + A_1 n )\cdots\Gamma( a_p + A_p n )}{\Gamma( b_1 + B_1 n )\cdots\Gamma( b_q + B_q n )} \, \frac {z^n} {n!}.

Its normalisation

{}_p\Psi^*_q \left[\begin{matrix} 
( a_1 , A_1 ) & ( a_2 , A_2 ) & \ldots & ( a_p , A_p ) \\ 
( b_1 , B_1 ) & ( b_2 , B_2 ) & \ldots & ( b_q , B_q ) \end{matrix} 
; z \right]
=
\frac{ \Gamma(b_1) \cdots \Gamma(b_q) }{ \Gamma(a_1) \cdots \Gamma(a_p) }
\sum_{n=0}^\infty \frac{\Gamma( a_1 + A_1 n )\cdots\Gamma( a_p + A_p n )}{\Gamma( b_1 + B_1 n )\cdots\Gamma( b_q + B_q n )} \, \frac {z^n} {n!}

becomes pFq(z) for A1...p = B1...q = 1.

The Fox–Wright function is a special case of the Fox H-function (Srivastava & Manocha 1984, p. 50):

{}_p\Psi_q \left[\begin{matrix} 
( a_1 , A_1 ) & ( a_2 , A_2 ) & \ldots & ( a_p , A_p ) \\ 
( b_1 , B_1 ) & ( b_2 , B_2 ) & \ldots & ( b_q , B_q ) \end{matrix} 
; z \right]
=
H^{1,p}_{p,q+1} \left[ -z \left| \begin{matrix}
( 1-a_1 , A_1 ) & ( 1-a_2 , A_2 ) & \ldots & ( 1-a_p , A_p ) \\
(0,1) & (1- b_1 , B_1 ) & ( 1-b_2 , B_2 ) & \ldots & ( 1-b_q , B_q ) \end{matrix} \right. \right].

References