Fagnano's problem

orthic triangle: \triangle DEF
inscribed triangles: \triangle DEF\,,\triangle GHI
|DE|+|EF|+|FD|\leq |GH|+|HI|+|IG|

In geometry, Fagnano's problem is an optimization problem that was first stated by Giovanni Fagnano in 1775:

For a given acute triangle determine the inscribed triangle of minimal perimeter.

The orthic triangle, with vertices at the base points of the altitudes of the given triangle, has the smallest perimeter of all triangles inscribed into an acute triangle, hence it is the solution of Fagnano's problem. Fagnano's original proof used calculus methods and an intermediate result given by his father Giulio Carlo de' Toschi di Fagnano. Later however several geometric proofs were discovered as well, amongst others by Hermann Schwarz and Lipót Fejér. These proofs use the geometrical properties of reflections to determine some minimal path representing the perimeter.

References

External links