Enneagonal antiprism

Uniform Enneagonal antiprism
TypePrismatic uniform polyhedron
ElementsF = 20, E = 36
V = 18 (χ = 2)
Faces by sides18{3}+2{9}
Schläfli symbols{2,18}
sr{2,9}
Wythoff symbol| 2 2 9
Coxeter-Dynkin
Symmetry groupD9d, [2+,18], (2*9), order 36
Rotation groupD9, [9,2]+, (922), order 18
ReferencesU77(g)
DualEnneagonal trapezohedron
Propertiesconvex

Vertex figure
3.3.3.9

In geometry, the enneagonal antiprism is one in an infinite set of convex antiprisms formed by triangle sides and two regular polygon caps, in this case two enneagons.

If faces are all regular, it is a semiregular polyhedron.

See also

Family of uniform antiprisms
2 3 4 5 6 7 8 9 10 11 12 n
s{2,4}
sr{2,2}
s{2,6}
sr{2,3}
s{2,8}
sr{2,4}
s{2,10}
sr{2,5}
s{2,12}
sr{2,6}
s{2,14}
sr{2,7}
s{2,16}
sr{2,8}
s{2,18}
sr{2,9}
s{2,20}
sr{2,10}
s{2,22}
sr{2,11}
s{2,24}
sr{2,12}
s{2,2n}
sr{2,n}












As spherical polyhedra

External links