Elongated octahedron

Elongated octahedron

Elongated octahedron

Deltahedral hexadecahedron
Faces4 {3}
4 traps
16 {3}
Edges1424
Vertices810
Vertex configuration 4 (32.42)
4 (3.42)
4 (34)
4 (35)
2 (36)
Symmetry D2h, [2,2], (*222), order 8
Properties ConvexDeltahedron

Nets

In geometry, an elongated octahedron (also trapezoidal octahedron) is a polyhedron with 8 faces (4 triangular, 4 isosceles trapezoidal), 14 edges, and 8 vertices.

As a deltahedral hexadecahedron

It can also be constructed as a hexadecahedron, with 16 triangular faces, 24 edges, and 10 vertices. Starting with the regular octahedron, it is elongated along one axes, adding 8 new triangles. It has 2 sets of 3 coplanar equilateral triangles (each forming a half-hexagon), and thus is not a Johnson solid.

If the sets of coplanar triangles are considered a single isosceles trapezoidal face (a triamond), it has 8 vertices, 14 edges, and 8 faces - 4 triangles and 4 triamonds . This construction has been called a triamond stretched octahedron.[1]

As a folded hexahedron

Another interpretation can represent this solid as a hexahedron, by considering pairs of trapezoids as a folded regular hexagon. It will have 6 faces (4 triangles, and 2 hexagons), 12 edges, and 8 vertices.

Cartesian coordinates

The Cartesian coordinates of the 8 vertices of an elongated octahedron, elongated in the x-axis, with edge length 2 are:

( ±1, 0, ±2 )
( ±2, ±1, 0 ).

The 2 extra vertices of the deltahedral variation are:

( 0, ±1, 0 ).

Related polyhedra and honeycombs

This polyhedron has a highest symmetry as D2h symmetry, order 8, representing 3 orthogonal mirrors. Removing one mirror between the pairs of triangles divides the polyhedron into two identical wedges, giving the names octahedral wedge, or double wedge. The half-model has 8 triangles and 2 squares.

In the special case, where the trapezoid faces are squares or rectangles, the pairs of triangles becoming coplanar and the polyhedron's geometry is more specifically a right rhombic prism.

It can also be seen as the augmentation of 2 octahedrons, sharing a common edge, with 2 tetrahedrons filling in the gaps. This represents a section of a tetrahedral-octahedral honeycomb. The elongated octahedron can thus be used with the tetrahedron as a space-filling honeycomb.

See also

References

External links