Electrical conduction system of the heart

Electrical conduction system of the heart

Isolated conduction system of the heart

Heart; conduction system 1-SA node. 2-AV node. 3. Bundle of His. 8. Septum
Details
Latin systema conducente cordis
Identifiers
TA A12.1.06.002
FMA 9476
Anatomical terminology
Principle of ECG formation. Note that the red lines represent the depolarization wave, not bloodflow.

The normal electrical conduction in the heart allows the impulse that is generated by the sinoatrial node (SA node) of the heart to be propagated to (and stimulate) the cardiac muscle (myocardium). The myocardium contracts after stimulation. It is the ordered stimulation of the myocardium during the cardiac cycle that allows efficient contraction of the heart, thereby allowing blood to be pumped throughout the body.

Structure

Signals arising in the SA node (located in the right atrium) stimulate the atria to contract and travel to the AV node, which is located in the interatrial septum. After a delay, the stimulus diverges and is conducted through the left and right bundle of His to the respective Purkinje fibers for each side of the heart, as well as to the endocardium at the apex of the heart, then finally to the ventricular epicardium.[1][2]

On the microscopic level, the wave of depolarization propagates to adjacent cells via gap junctions located on the intercalated disk. The heart is a functional syncytium (not to be confused with a true "syncytium" in which all the cells are fused together, sharing the same plasma membrane as in skeletal muscle). In a functional syncytium, electrical impulses propagate freely between cells in every direction, so that the myocardium functions as a single contractile unit. This property allows rapid, synchronous depolarization of the myocardium. While advantageous under normal circumstances, this property can be detrimental, as it has potential to allow the propagation of incorrect electrical signals. These gap junctions can close to isolate damaged or dying tissue, as in a myocardial infarction.

Function

Electrochemical mechanism

Cardiac muscle has some similarities to neurons and skeletal muscle, as well as important unique properties. Like a neuron, a given myocardial cell has a negative membrane potential when at rest. Stimulation above a threshold value induces the opening of voltage-gated ion channels and a flood of cations into the cell. The positively charged ions entering the cell cause the depolarization characteristic of an action potential. Like skeletal muscle, depolarization causes the opening of voltage-gated calcium channels and release of Ca2+ from the t-tubules. This influx of calcium causes calcium-induced calcium release from the sarcoplasmic reticulum, and free Ca2+ causes muscle contraction. After a delay, Potassium channels reopen and the resulting flow of K+ out of the cell causes repolarization to the resting state.[3][4]

Note that there are important physiological differences between nodal cells and ventricular cells; the specific differences in ion channels and mechanisms of polarization give rise to unique properties of SA node cells, most important, the spontaneous depolarizations necessary for the SA node's pacemaker activity.

Requirements for effective pumping

In order to maximize efficiency of contraction and cardiac output, the conduction system of the heart has:

Depolarization and the ECG

The ECG complex. P=P wave, PR=PR interval, QRS=QRS complex, QT=QT interval, ST=ST segment, T=T wave

SA node: P wave

Under normal conditions, electrical activity is spontaneously generated by the SA node, the physiological pacemaker. This electrical impulse is propagated throughout the right atrium, and through Bachmann's bundle to the left atrium, stimulating the myocardium of the atria to contract. The conduction of the electrical impulse throughout the atria is seen on the ECG as the P wave.[3][5]

As the electrical activity is spreading throughout the atria, it travels via specialized pathways, known as internodal tracts, from the SA node to the AV node.

AV node/Bundles: PR interval

The AV node functions as a critical delay in the conduction system. Without this delay, the atria and ventricles would contract at the same time, and blood wouldn't flow effectively from the atria to the ventricles. The delay in the AV node forms much of the PR segment on the ECG. And part of atrial repolarization can be represented by PR segment.

The distal portion of the AV node is known as the Bundle of His. The Bundle of His splits into two branches in the interventricular septum, the left bundle branch and the right bundle branch. The left bundle branch activates the left ventricle, while the right bundle branch activates the right ventricle. The left bundle branch is short, splitting into the left anterior fascicle and the left posterior fascicle. The left posterior fascicle is relatively short and broad, with dual blood supply, making it particularly resistant to ischemic damage. The left posterior fascicle transmits impulses to the papillary muscles, leading to mitral valve closure. As the left posterior fascicle is shorter and broader than the right, impulses reach the papillary muscles just prior to depolarization, and therefore contraction, of the left ventricle myocardium. This allows pre-tensioning of the chordae tendinae, increasing the resistance to flow through the mitral valve during left ventricular contraction.[3] This mechanism works in the same manner as pre-tensioning of car seatbelts.

Purkinje fibers/ventricular myocardium: QRS complex

The two bundle branches taper out to produce numerous Purkinje fibers, which stimulate individual groups of myocardial cells to contract.[3]

The spread of electrical activity through the ventricular myocardium produces the QRS complex on the ECG.

Ventricular repolarization

The last event of the cycle is the repolarization of the ventricles. It is the restoring of the resting state. In the ECG, repolarization includes the J point, ST-segment, and T- and U-waves.[6]

Clinical significance

ECG

The electrocardiogram (ECG or EKG) is often used to examine the electrical conduction system of the heart.

Arrhythmia

Main article: Cardiac arrhythmia

An 'arrhythmia' refers to an abnormal rhythm or speed of rhythm of the heartbeat. An abnormal rhythm or speed is defined as one which is not physiological.

Speed

Main articles: Bradycardia and Tachycardia

A resting heart that beats slower than 60 beats per minute, or faster than 100 beats per minute, is regarded as having an arrhythmia. A heartbeat slower than 60 beats per minute is known as bradycardia, and a heartbeat faster than 100 is known as a tachycardia.

Physiological

Some individuals, for example trained athletes, may have heart beats slower than 60 beats per minute when not exercising. If the SA node fails to initialize, the AV junction can take over as the main pacemaker of the heart. The AV junction "surrounds" the AV node (the AV node is not able to initialize its own impulses) and has a regular rate of 40 to 60 bpm. These "junctional" rhythms are characterized by a missing or inverted P-Wave. If both the SA node and the AV junction fail to initialize the electrical impulse, the ventricles can fire the electrical impulses themselves at a rate of 20 to 40 bpm and will have a QRS complex of greater than 120 ms.

Pacemakers

In the event of arrhythmia, a pacemaker may be surgically inserted into the conduction system.

See also

This article uses anatomical terminology; for an overview, see anatomical terminology.

References

  1. "Anatomy and Function of the Heart's Electrical System". Retrieved 2013-08-07.
  2. "Your Heart's Electrical System". National Heart, Lung, and Blood Institute. National Institutes of Health. November 17, 2011. Retrieved January 1, 2015.
  3. 3.0 3.1 3.2 3.3 "Cardiac Muscle and Electrical Activity". OpenStax CNX: Anatomy & Physiology. OpenStax CNX. November 7, 2014. Retrieved January 2, 2015.
  4. "Cardiac Muscle Fibers". ZY 560 Mammalian Physiology. Auburn University. Retrieved January 2, 2015.
  5. "Cardiac Cycle". ECG Tutorial. University of Michigan Health System. Retrieved January 2, 2015.
  6. Kowey, P., Yan, Gan-Xin. "Ventricular repolarization components on the electrocardiogram". Retrieved 2013-03-08.

External links