EIF4A1
Eukaryotic initiation factor 4A-I is a protein that in humans is encoded by the EIF4A1 gene.[1][2][3]
Interactions
EIF4A1 has been shown to interact with EIF4E[4][5] and Eukaryotic translation initiation factor 4 gamma.[4][5][6]
References
- ↑ Kim NS, Kato T, Abe N, Kato S (Jun 1993). "Nucleotide sequence of human cDNA encoding eukaryotic initiation factor 4AI". Nucleic Acids Res. 21 (8): 2012. doi:10.1093/nar/21.8.2012. PMC 309447. PMID 8493113.
- ↑ Jones E, Quinn CM, See CG, Montgomery DS, Ford MJ, Kölble K et al. (Dec 1998). "The linked human elongation initiation factor 4A1 (EIF4A1) and CD68 genes map to chromosome 17p13". Genomics 53 (2): 248–50. doi:10.1006/geno.1998.5515. PMID 9790779. Vancouver style error (help)
- ↑ "Entrez Gene: EIF4A1 eukaryotic translation initiation factor 4A, isoform 1".
- ↑ 4.0 4.1 Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S et al. (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Mol. Syst. Biol. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931.
- ↑ 5.0 5.1 Connolly E, Braunstein S, Formenti S, Schneider RJ (May 2006). "Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells". Mol. Cell. Biol. 26 (10): 3955–65. doi:10.1128/MCB.26.10.3955-3965.2006. PMC 1489005. PMID 16648488.
- ↑ Harris TE, Chi A, Shabanowitz J, Hunt DF, Rhoads RE, Lawrence JC (Apr 2006). "mTOR-dependent stimulation of the association of eIF4G and eIF3 by insulin". EMBO J. 25 (8): 1659–68. doi:10.1038/sj.emboj.7601047. PMC 1440840. PMID 16541103.
Further reading
- Reddy NS, Roth WW, Bragg PW, Wahba AJ (1988). "Isolation and mapping of a gene for protein synthesis initiation factor 4A and its expression during differentiation of murine erythroleukemia cells". Gene 70 (2): 231–43. doi:10.1016/0378-1119(88)90195-3. PMID 3215517.
- Kukimoto I, Watanabe S, Taniguchi K, Ogata T, Yoshiike K, Kanda T (1997). "Characterization of the cloned promoter of the human initiation factor 4AI gene". Biochem. Biophys. Res. Commun. 233 (3): 844–7. doi:10.1006/bbrc.1997.6555. PMID 9168945.
- Imataka H, Sonenberg N (1997). "Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A". Mol. Cell. Biol. 17 (12): 6940–7. PMC 232551. PMID 9372926.
- Gradi A, Imataka H, Svitkin YV, Rom E, Raught B, Morino S et al. (1998). "A novel functional human eukaryotic translation initiation factor 4G". Mol. Cell. Biol. 18 (1): 334–42. PMC 121501. PMID 9418880.
- Craig AW, Haghighat A, Yu AT, Sonenberg N (1998). "Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation". Nature 392 (6675): 520–3. doi:10.1038/33198. PMID 9548260.
- Henis-Korenblit S, Strumpf NL, Goldstaub D, Kimchi A (2000). "A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation". Mol. Cell. Biol. 20 (2): 496–506. doi:10.1128/MCB.20.2.496-506.2000. PMC 85113. PMID 10611228.
- Quinn CM, Wiles AP, El-Shanawany T, Catchpole I, Alnadaf T, Ford MJ et al. (1999). "The human eukaryotic initiation factor 4AI gene (EIF4A1) contains multiple regulatory elements that direct high-level reporter gene expression in mammalian cell lines". Genomics 62 (3): 468–76. doi:10.1006/geno.1999.6031. PMID 10644445.
- Cuesta R, Xi Q, Schneider RJ (2000). "Adenovirus-specific translation by displacement of kinase Mnk1 from cap-initiation complex eIF4F". EMBO J. 19 (13): 3465–74. doi:10.1093/emboj/19.13.3465. PMC 313943. PMID 10880459.
- Mendell JT, Medghalchi SM, Lake RG, Noensie EN, Dietz HC (2000). "Novel Upf2p orthologues suggest a functional link between translation initiation and nonsense surveillance complexes". Mol. Cell. Biol. 20 (23): 8944–57. doi:10.1128/MCB.20.23.8944-8957.2000. PMC 86549. PMID 11073994.
- Li W, Belsham GJ, Proud CG (2001). "Eukaryotic initiation factors 4A (eIF4A) and 4G (eIF4G) mutually interact in a 1:1 ratio in vivo". J. Biol. Chem. 276 (31): 29111–5. doi:10.1074/jbc.C100284200. PMID 11408474.
- Du MX, Johnson RB, Sun XL, Staschke KA, Colacino J, Wang QM (2002). "Comparative characterization of two DEAD-box RNA helicases in superfamily II: human translation-initiation factor 4A and hepatitis C virus non-structural protein 3 (NS3) helicase". Biochem. J. 363 (Pt 1): 147–55. doi:10.1042/0264-6021:3630147. PMC 1222461. PMID 11903057.
- Bohnsack MT, Regener K, Schwappach B, Saffrich R, Paraskeva E, Hartmann E et al. (2002). "Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm". EMBO J. 21 (22): 6205–15. doi:10.1093/emboj/cdf613. PMC 137205. PMID 12426392.
- Yang HS, Cho MH, Zakowicz H, Hegamyer G, Sonenberg N, Colburn NH (2004). "A novel function of the MA-3 domains in transformation and translation suppressor Pdcd4 is essential for its binding to eukaryotic translation initiation factor 4A". Mol. Cell. Biol. 24 (9): 3894–906. doi:10.1128/MCB.24.9.3894-3906.2004. PMC 387765. PMID 15082783.
- Mingot JM, Bohnsack MT, Jäkle U, Görlich D (2004). "Exportin 7 defines a novel general nuclear export pathway". EMBO J. 23 (16): 3227–36. doi:10.1038/sj.emboj.7600338. PMC 514512. PMID 15282546. Vancouver style error (help)
- Hinton TM, Coldwell MJ, Carpenter GA, Morley SJ, Pain VM (2007). "Functional analysis of individual binding activities of the scaffold protein eIF4G". J. Biol. Chem. 282 (3): 1695–708. doi:10.1074/jbc.M602780200. PMID 17130132.
- Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S et al. (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Mol. Syst. Biol. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931.
|