Discrete dipole approximation codes

This article contains list of discrete dipole approximation codes and their applications.

The discrete dipole approximation (DDA) is a flexible technique for computing scattering and absorption by targets of arbitrary geometry. Given a target of arbitrary geometry, one seeks to calculate its scattering and absorption properties. The DDA is an approximation of the continuum target by a finite array of polarizable points. The points acquire dipole moments in response to the local electric field. The dipoles of course interact with one another via their electric fields, so the DDA is also sometimes referred to as the coupled dipole approximation. It is closely related to method of moments, digitized Green's function, or volume integral equation method.

Classification

The compilation contains information about the discrete dipole approximation, relevant links, and their applications. There are reviews [1] [2] as well as published comparison of existing codes. [3]

General purpose public domain DDA codes

Name Authors References Language Short Description
DDSCAT [4][5] B. T. Draine and P.J. Flatau [1]

[6]

Fortran Calculates scattering and absorption of electromagnetic waves by particles of arbitrary geometry and periodic particles. Last release 7.3, June 2013.
DDSCAT.C++ V. Choliy [7] C++ Version of DDSCAT translated to C++
ADDA M. A. Yurkin, A. G. Hoekstra, and others [8]

[9]

C Calculates scattering and absorption of electromagnetic waves by particles of arbitrary geometry. Can employ GPU and MPI to accelerate computations.
OpenDDA J. McDonald [10]

[11]

C Calculates scattering and absorption of electromagnetic waves by particles of arbitrary geometry.
DDA-GPU S. Kieß [12] C++ Calculates scattering and absorption of electromagnetic waves by particles of arbitrary geometry, using GPU for acceleration. Algorithms are partly based on ADDA.

Specialized DDA codes

Name Authors References Language Short Description
DDSURF R. Schmehl and B. M. Nebeker [13] Fortran Calculates scattering and absorption of electromagnetic waves by particles of arbitrary geometry on or in proximity to a surface. For the latter 2D FFT is used.
D. W. Mackowski [14] Fortran Calculates scattering and absorption of electromagnetic waves by particles of arbitrary geometry and calculates analytically orientationally averaged scattering properties.
CDA M. D. McMahon [15] Matlab Calculates scattering and absorption of electromagnetic waves by particles of arbitrary geometry.
DDA-SI V. L. Y. Loke [16] Matlab Calculates scattering and absorption of electromagnetic waves by particles of arbitrary geometry on or in proximity to a surface. No FFT acceleration is used.

Relevant scattering codes

See also

References

  1. 1.0 1.1 B. T. Draine and P. J. Flatau (1994). "Discrete dipole approximation for scattering calculations". J. Opt. Soc. Am. A 11 (4): 1491–1499. Bibcode:1994JOSAA..11.1491D. doi:10.1364/JOSAA.11.001491.
  2. M. A. Yurkin and A. G. Hoekstra (2007). "The discrete dipole approximation: an overview and recent developments". J. Quant. Spectrosc. Radiat. Transfer 106 (1-3): 558–589. arXiv:0704.0038. Bibcode:2007JQSRT.106..558Y. doi:10.1016/j.jqsrt.2007.01.034.
  3. A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov (2007). "Comparison between discrete dipole implementations and exact techniques". J. Quant. Spectrosc. Radiat. Transfer 106 (1-3): 417–436. Bibcode:2007JQSRT.106..417P. doi:10.1016/j.jqsrt.2007.01.026.
  4. DDSCAT B. T. Draine page
  5. DDSCAT Google Code page
  6. B. T. Draine and P. J. Flatau (2008). "Discrete-dipole approximation for periodic targets: theory and tests". J. Opt. Soc. Am. A 25 (11): 2693–2703. arXiv:0809.0338. Bibcode:2008JOSAA..25.2693D. doi:10.1364/JOSAA.25.002693.
  7. V. Y. Choliy (2013). "The discrete dipole approximation code DDscat.C++: features, limitations and plans". Adv. Astron. Space Phys. 3: 66–70. ISSN 2227-1481.
  8. M. A. Yurkin, V. P. Maltsev and A. G. Hoekstra (2007). "The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength". J. Quant. Spectrosc. Radiat. Transfer 106 (1-3): 546–557. arXiv:0704.0037. Bibcode:2007JQSRT.106..546Y. doi:10.1016/j.jqsrt.2007.01.033.
  9. M. A. Yurkin and A. G. Hoekstra (2011). "The discrete-dipole-approximation code ADDA: capabilities and known limitations". J. Quant. Spectrosc. Radiat. Transfer 112 (13): 2234–2247. Bibcode:2011JQSRT.112.2234Y. doi:10.1016/j.jqsrt.2011.01.031. ISSN 0022-4073.
  10. J. McDonald, A. Golden, and G. Jennings (2009). "OpenDDA: a novel high-performance computational framework for the discrete dipole approximation". Int. J. High Perf. Comp. Appl. 23 (1): 42–61. arXiv:0908.0863. doi:10.1177/1094342008097914.
  11. J. McDonald (2007). "OpenDDA - a novel high-performance computational framework for the discrete dipole approximation". PhD thesis (National University of Ireland, Galway).
  12. M. Zimmermann, A. Tausendfreund, S. Patzelt, G. Goch, S. Kieß, M. Z. Shaikh, M. Gregoire, and S. Simon (2012). "In-process measuring procedure for sub-100 nm structures". J. Laser Appl. 24 (4): 042010. Bibcode:2012JLasA..24d2010Z. doi:10.2351/1.4719936.
  13. R. Schmehl, B. M. Nebeker, and E. D. Hirleman (1997). "Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique". J. Opt. Soc. Am. A 14 (11): 3026–3036. Bibcode:1997JOSAA..14.3026S. doi:10.1364/JOSAA.14.003026.
  14. D. W. Mackowski (2002). "Discrete dipole moment method for calculation of the T matrix for nonspherical particles". J. Opt. Soc. Am. A 19 (5): 881–893. Bibcode:2002JOSAA..19..881M. doi:10.1364/JOSAA.19.000881.
  15. M. D. McMahon (2006). "Effects of geometrical order on the linear and nonlinear optical properties of metal nanoparticles". PhD thesis (Vanderbilt University, Nashville, Tennessee).
  16. V. L. Y. Loke, P. M. Mengüç, and Timo A. Nieminen (2011). "Discrete dipole approximation with surface interaction: Computational toolbox for MATLAB". Journal of Quantitative Spectroscopy and Radiative Transfer 112 (11): 1711–1725. Bibcode:2011JQSRT.112.1711L. doi:10.1016/j.jqsrt.2011.03.012.

External links