Discrete category
In mathematics, in the field of category theory, a discrete category is a category whose only morphisms are the identity morphisms:
- homC(X, X) = {idX} for all objects X
- homC(X, Y) = ∅ for all objects X ≠ Y
Since by axioms, there is always the identity morphism between the same object, we can express the above as condition on the cardinality of the hom-set
- | homC(X, Y) | is 1 when X = Y and 0 when X is not equal to Y.
Some authors prefer a weaker notion, where a discrete category merely needs to be equivalent to such a category.
Simple facts
Any class of objects defines a discrete category when augmented with identity maps.
Any subcategory of a discrete category is discrete. Also, a category is discrete if and only if all of its subcategories are full.
The limit of any functor from a discrete category into another category is called a product, while the colimit is called a coproduct.
References
- Robert Goldblatt (1984). Topoi, the Categorial Analysis of Logic (Studies in logic and the foundations of mathematics, 98). North-Holland. Reprinted 2006 by Dover Publications, and available online at Robert Goldblatt's homepage.