Diisopropylamine
Names | |
---|---|
IUPAC name
N-Isopropylpropan-2-amine | |
Other names
N-(1-Methylethyl)-2-propanamine | |
Identifiers | |
Abbreviations | DIPA |
605284 | |
108-18-9 | |
ChemSpider | 7624 |
EC number | 203-558-5 |
| |
Jmol-3D images | Image |
PubChem | 7912 |
RTECS number | IM4025000 |
| |
UNII | BR9JLI40NO |
UN number | 1158 |
Properties | |
Molecular formula |
C6H15N |
Molar mass | 101.19 g·mol−1 |
Appearance | Colorless liquid |
Odor | Fishy, ammoniacal |
Density | 0.722 g mL−1 |
Melting point | −61.00 °C; −77.80 °F; 212.15 K |
Boiling point | 83 °C; 181 °F; 356 K |
miscible[1] | |
Vapor pressure | 6.7 kPa (at 20 °C) |
Acidity (pKa) | 40 |
Basicity (pKb) | 54 |
Refractive index (nD) |
1.392–1.393 |
Thermochemistry | |
Std enthalpy of formation (ΔfH |
−173.6–−168.4 kJ mol−1 |
Std enthalpy of combustion (ΔcH |
−4.3363–−4.3313 MJ mol−1 |
Hazards | |
GHS pictograms | |
GHS signal word | DANGER |
H225, H302, H314, H332 | |
P210, P280, P305+351+338, P310 | |
EU Index | 612-129-00-5 |
EU classification | F C |
R-phrases | R11, R20/22, R34 |
S-phrases | (S1/2), S16, S26, S36/37/39 |
NFPA 704 | |
Flash point | −17 °C (1 °F; 256 K) |
315 °C (599 °F; 588 K) | |
Explosive limits | 1.1–7.1%[1] |
LD50 (Median lethal dose) |
|
US health exposure limits (NIOSH): | |
PEL (Permissible) |
TWA 5 ppm (20 mg/m3) [skin][1] |
REL (Recommended) |
TWA 5 ppm (20 mg/m3) [skin][1] |
IDLH (Immediate danger) |
200 ppm[1] |
Related compounds | |
Related amines |
|
Related compounds |
|
Except where noted otherwise, data is given for materials in their standard state (at 25 °C (77 °F), 100 kPa) | |
verify (what is: / ?) | |
Infobox references | |
Diisopropylamine is a secondary amine with the chemical formula (CH3)2HC-NH-CH(CH3)2. It is best known as its lithium derivative of its conjugate base, lithium diisopropylamide, known as "LDA". LDA is a strong, non-nucleophilic base.
Diisopropylamine can be dried by distillation from potassium hydroxide (KOH) or drying over sodium wire.[2]
Reactions and uses
Diisopropylamine is primarily used as a precursor to two herbicides, dilate and triallate, as well as certain sulfenamides used in the vulcanization of rubber.[3] It is also used to prepare N,N-Diisopropylethylamine (Hünig's base) by alkylation with diethyl sulfate.[4]
The bromide salt of diisopropylamine, diisopropylammonium bromide, is an organic molecular solid whose crystals are ferroelectric at room temperature.[5] This renders it a possible more biospherically inert alternative to barium titanate.
Preparation
Diisopropylamine is commercially available. It may be prepared by the reductive amination of acetone with ammonia using a modified copper oxide, generally copper chromite, as a catalyst:[6][7]
- NH
3 + 2(CH
3)
2CO + 2H
2 → C
6H
15N + 2H
2O
References
- ↑ 1.0 1.1 1.2 1.3 1.4 "NIOSH Pocket Guide to Chemical Hazards #0217". National Institute for Occupational Safety and Health (NIOSH).
- ↑ Armarego, W. L. F. and Perrin, D. D. Purification of Laboratory Chemicals 4th Ed. pg 186, Butterworth and Heinemann: Boston, 1996.
- ↑ Karsten Eller, Erhard Henkes, Roland Rossbacher, Hartmut Höke "Amines, Aliphatic" Ullmann's Encyclopedia of Industrial Chemistry, 2000, Wiley-VCH, Weinheim. doi:10.1002/14356007.a02_001
- ↑ Hünig, S.; Kiessel, M. (1958). "Spezifische Protonenacceptoren als Hilfsbasen bei Alkylierungs- und Dehydrohalogenierungsreaktionen". Chemische Berichte 91 (2): 380–392. doi:10.1002/cber.19580910223.
- ↑ "An organic alternative to oxides? Organic ferroelectric molecule shows promise for memory chips, sensors". phys.org. Jan 24, 2013.
- ↑ Karl Löffler. "Über eine neue Bildungsweise primärer und sekundärer Amine aus Ketonen". Berichte 43 (2): 2031–2035. doi:10.1002/cber.191004302145.
- ↑ US 2686811, Willard Bull, "One-step process for preparing diisopropylamine"