Digoxigenin
Names | |
---|---|
IUPAC name
3-[(3S,5R,8R,9S,10S,12R,13S,14S,17R)-3,12,14-trihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one | |
Identifiers | |
1672-46-4 | |
ChEBI | CHEBI:42098 |
ChEMBL | ChEMBL1153 |
ChemSpider | 14728 |
| |
PubChem | 15478 |
Properties | |
C23H34O5 | |
Molar mass | 390.51 g/mol |
Except where noted otherwise, data is given for materials in their standard state (at 25 °C (77 °F), 100 kPa) | |
verify (what is: / ?) | |
Infobox references | |
Digoxigenin (DIG) is a steroid found exclusively in the flowers and leaves of the plants Digitalis purpurea, Digitalis orientalis and Digitalis lanata (foxgloves), where it is attached to sugars, to form the glycosides (e.g. Lanatoside C).[1]
Use in biotechnology
Digoxigenin is a hapten, a small molecule with high antigenicity (not to be confused with immunogenicity), that is used in many molecular biology applications similarly to other popular haptens such as DNP (dinitrophenol), biotin, and fluorescein. Typically, digoxigenin is introduced chemically (conjugation) into biomolecules (proteins, nucleic acids) to be detected in further assays. Anti-digoxigenin antibodies with high affinities and specificity, are used in a variety of biological immuno-assays (e.g. ELISA). The antibodies are labeled with dyes, enzymes or fluorescence, directly or secondarily, for visualization and detection.
Digoxigenin is thus an all-purpose immuno-tag, and in particular a standard immunohistochemical marker for in situ hybridization.[2][3] In this case it is conjugated to a single species of RNA nucleotide triphosphate (typically uridine), which is then incorporated into RNA (a "riboprobe") as it is synthesized by the cellular machinery.
It allows to make :
- sensitive non-radioactive in situ hybridization probes to detect nucleic acids in plants, able to detect 1 µg of plasmid DNA.[4]
- peptide-DIG conjugates, i.e. bradykinin assay by very sensitive chemiluminescence immunoassays.[5]
- fluorescent and DIG-labeled tracers for competitive immunoassays, i.e. to limit detect digoxin, a drug used to cure cardiac arrhythmia, down to 0.2 ng mL−1.[6]
- Digoxigenin may be conjugated to sugars to study glycosylation events,[7] even in biological systems.
References
- ↑ Polya, G. (2003). Biochemical Targets of Plant Bioactive Compounds. New York: CRC Press. ISBN 978-0415308298.
- ↑ Eisel, D.; Grünewald-Janho, S.; Krushen, B., ed. (2002). DIG Application Manual for Nonradioactive in situ Hybridization (3rd ed.). Penzberg: Roche Diagnostics.
- ↑ Hauptmann, G.; Gerster, T. (1994). "Two-color whole-mount in situ hybridization to vertebrate and Drosophila embryos". Trends in Genetics 10 (8): 266. doi:10.1016/0168-9525(90)90008-T. PMID 7940754.
- ↑ Hart, S. M.; Basu, C. (2009). "Optimization of a Digoxigenin-Based Immunoassay System for Gene Detection in Arabidopsis thaliana" (PDF). Journal of Biomolecular Techniques 20 (2): 96–100. PMC 2685603. PMID 19503620.
- ↑ Décarie, A.; Drapeau, G.; Closset, J.; Couture, R.; Adam, A. (1994). "Development of a Digoxigenin-labeled Peptide: Application to a Chemiluminoenzyme Immunoassay of Bradykinin in Inflamed Tissues". Peptides 15 (3): 511–518. doi:10.1016/0196-9781(94)90214-3. PMID 7937327.
- ↑ Mayilo, S.; Ehlers, B.; Wunderlich, M.; Klar, T. A.; Josel, H. P.; Heindl, D.; Nichtl, A.; Kürzinger, K.; Feldmann, J. (2009). "Competitive Homogeneous Digoxigenin Immunoassay Based on Fluorescence Quenching by Gold Nanoparticles". Analytica Chimica Acta 646 (1–2): 119–122. doi:10.1016/j.aca.2009.05.023. PMID 19523564.
- ↑ Goodarzi, M. T.; Rafiq, M.; Turner, G. (1995). "An Improved Multiwell Immunoassay Using Digoxigenin-Labelled Lectins to Study the Glycosylation of Purified Glycoproteins". Biochemical Society Transactions 23 (2): 168S. PMID 7672194.