Diclofenac

"Diclo" redirects here. For the organic solvent sometimes called Di-clo, see Dichloromethane.
Diclofenac
Clinical data
Trade names Aclonac, Cataflam, Voltaren
AHFS/Drugs.com monograph
MedlinePlus a689002
  • AU: C
  • US: C (Risk not ruled out) in 1st and 2nd trimester, D in 3rd trimester
  • AU: Pharmacy Only (S2) S4
  • UK: POM (P for topical formulation)
  • -only in most preparations/countries, limited OTC in some countries, manufacture and veterinary use is banned in India, Nepal, and Pakistan due to imminent extinction of local vultures
oral, rectal, intramuscular, intravenous (renal- and gallstones), topical
Pharmacokinetic data
Protein binding More than 99%
Metabolism hepatic, no active metabolites exist
Half-life 1.2-2 hr (35% of the drug enters enterohepatic recirculation)
Excretion 40% biliary 60% urine
Identifiers
15307-86-5 Yes
D11AX18 M01AB05, M02AA15, S01BC03
PubChem CID 3033
IUPHAR ligand 2714
DrugBank DB00586 
ChemSpider 2925 Yes
UNII 144O8QL0L1 Yes
KEGG D07816 Yes
ChEBI CHEBI:47381 Yes
ChEMBL CHEMBL139 Yes
PDB ligand ID DIF (PDBe, RCSB PDB)
Chemical data
Formula C14H11Cl2NO2
296.148 g/mol
  (what is this?)  (verify)

Diclofenac (INN; see trade names below) is a nonsteroidal anti-inflammatory drug (NSAID) taken or applied to reduce inflammation and as an analgesic reducing pain in certain conditions. It is supplied as or contained in medications under a variety of trade names.

The name "diclofenac" derives from its chemical name: 2-(2,6-dichloranilino) phenylacetic acid. Diclofenac was originally developed by Ciba-Geigy (now Novartis) in 1973.[1] It was first introduced in the UK in 1979.[2][3]

In the United Kingdom, United States, India, and Brazil diclofenac may be supplied as either the sodium or potassium salt; in China, it is most often supplied as the sodium salt, while in some other countries it is only available as the potassium salt. Diclofenac is available as a generic drug in a number of formulations, including diclofenac diethylamine, which is applied topically. Over-the-counter (OTC) use is approved in some countries for minor aches and pains and fever associated with common infections.

Medical uses

Diclofenac is used to treat pain, inflammatory disorders, and dysmenorrhea.[4]

Voltaren (diclofenac) 50 mg enteric coated tablets

Inflammatory disorders may include musculoskeletal complaints, especially arthritis, rheumatoid arthritis, polymyositis, dermatomyositis, osteoarthritis, dental pain, TMJ pain, spondylarthritis, ankylosing spondylitis, gout attacks,[5] and pain management in cases of kidney stones and gallstones. An additional indication is the treatment of acute migraines.[6] Diclofenac is used commonly to treat mild to moderate postoperative or post-traumatic pain, in particular when inflammation is also present,[5] and is effective against menstrual pain and endometriosis.

As long-term use of diclofenac and similar NSAIDs predisposes for peptic ulcer, many patients at risk for this complication are prescribed Arthrotec - a combination of diclofenac and misoprostol, a synthetic prostaglandin (PGE1) analogue, to protect the stomach lining.

Arthrotec (diclofenac and misoprostol) 50-mg tablets

Diclofenac is also available in topical forms under the brand names Iodex UltraGel, Flector, Pennsaid, Solaraze, and Voltaren for the treatment of conditions such as osteoarthritis, actinic keratosis, and acute pain caused by minor strains, sprains, and contusions (bruises).[7]

In many countries,[8] eye drops are sold to treat acute and chronic nonbacterial inflammation of the anterior part of the eyes (e.g., postoperative states). A common brand name is Voltaren-ophtha.

Investigational uses

Diclofenac is often used to treat chronic pain associated with cancer, in particular if inflammation is also present (Step I of the World Health Organization (WHO) scheme for treatment of chronic pain).[9]

Dyloject (diclofenac) 2 ml for IV and IM administration

Diclofenac can be combined with opioids if needed. Under trade names such as Combaren and Voltaren Plus, a fixed combination of diclofenac and codeine (50 mg each) is available in Europe.

Treatment can be terminated as soon as the usual treatment with radiation and/or chemotherapy causes remission of fever.

Sintofarm (diclofenac) for suppository administration

Diclofenac has been found to increase the blood pressure in patients with Shy-Drager syndrome and diabetes mellitus. Currently, this use is highly investigative and cannot be recommended as routine treatment.

Diclofenac has been found effective against all strains of multidrug-resistant E. coli, with a MIC of 25 micrograms/ml. Therefore, it may have the capacity to treat uncomplicated urinary tract infections caused by E. coli.[10] It has also shown effectiveness in treating Salmonella infections in mice,[11] and is under investigation for the treatment of tuberculosis.[12]

Diclofenac is an antiuricosuric (drugs that raise serum uric acid levels and lower urine uric acid levels).[13]

Contraindications

Side effects

Cardiac

Following the identification of increased risks of heart attacks with the selective COX-2 inhibitor rofecoxib in 2004, attention has focused on all the other members of the NSAIDs group, including diclofenac. Research results are mixed, with a meta-analysis of papers and reports up to April 2006 suggesting a relative increased rate of heart disease of 1.63 compared to nonusers.[15] Professor Peter Weissberg, Medical Director of the British Heart Foundation said, "However, the increased risk is small, and many patients with chronic debilitating pain may well feel that this small risk is worth taking to relieve their symptoms". Only aspirin was found not to increase the risk of heart disease; however, this is known to have a higher rate of gastric ulceration than diclofenac.

A subsequent large study of 74,838 users of NSAIDs or coxibs found no additional cardiovascular risk from diclofenac use.[16] A very large study of 1,028,437 Danish users of various NSAIDs or coxibs found the "Use of the nonselective NSAID diclofenac and the selective cyclooxygenase-2 inhibitor rofecoxib was associated with an increased risk of cardiovascular death (odds ratio, 1.91; 95% confidence interval, 1.62 to 2.42; and odds ratio, 1.66; 95% confidence interval, 1.06 to 2.59, respectively), with a dose-dependent increase in risk."[17] In Britain the Medicines and Healthcare Products Regulatory Agency (MHRA) said in June 2013 that the drug should not be used by people with serious underlying heart conditions—people who had suffered heart failure, heart disease or a stroke were advised to stop using it completely.[18] As of January 15 2015 the MHRA announced that diclofenac will be reclassified as a prescription-only medicine (POM) due to the risk of cardiovascular adverse events.[19]

Diclofenac has similar COX-2 selectivity to celecoxib.[20] A review by FDA Medical Officer David Graham concluded diclofenac does increase the risk of myocardial infarction.[21]

Gastrointestinal

Hepatic

Renal

Mental health

Other

Mechanism of action

The primary mechanism responsible for its anti-inflammatory, antipyretic, and analgesic action is thought to be inhibition of prostaglandin synthesis by inhibition of cyclooxygenase (COX). It also appears to exhibit bacteriostatic activity by inhibiting bacterial DNA synthesis.[29]

Inhibition of COX also decreases prostaglandins in the epithelium of the stomach, making it more sensitive to corrosion by gastric acid. This is also the main side effect of diclofenac. Diclofenac has a low to moderate preference to block the COX2-isoenzyme (approximately 10-fold) and is said to have, therefore, a somewhat lower incidence of gastrointestinal complaints than noted with indomethacin and aspirin.

The action of one single dose is much longer (6 to 8 hr) than the very short half-life of the drug indicates. This could be partly because it persists for over 11 hours in synovial fluids.[30]

Diclofenac may also be a unique member of the NSAIDs. Some evidence indicates it inhibits the lipoxygenase pathways, thus reducing formation of the leukotrienes (also pro-inflammatory autacoids). It also may inhibit phospholipase A2 as part of its mechanism of action. These additional actions may explain its high potency - it is the most potent NSAID on a broad basis.[31]

Marked differences exist among NSAIDs in their selective inhibition of the two subtypes of cyclooxygenase, COX-1 and COX-2. Much pharmaceutical drug design has attempted to focus on selective COX-2 inhibition as a way to minimize the gastrointestinal side effects of NSAIDs such as aspirin. In practice, use of some COX-2 inhibitors with their adverse effects has led to massive numbers of patient family lawsuits alleging wrongful death by heart attack, yet other significantly COX-selective NSAIDs, such as diclofenac, have been well tolerated by most of the population.

Besides the well-known and often-cited COX-inhibition, a number of other molecular targets of diclofenac possibly contributing to its pain-relieving actions have recently been identified. These include:

Ecological effects

Main article: Indian vulture crisis

Use of diclofenac in animals has been reported to have led to a sharp decline in the vulture population in the Indian subcontinent – a 95% decline by 2003[32] and a 99.9% decline by 2008. The mechanism is presumed to be renal failure, a known side effect of diclofenac. Vultures eat the carcasses of livestock that have been administered veterinary diclofenac, and are poisoned by the accumulated chemical,[33] as vultures do not have a particular enzyme to break down diclofenac. At a meeting of the National Wildlife Board in March 2005, the Government of India announced it intended to phase out the veterinary use of diclofenac.[34] Meloxicam is a safer candidate to replace use of diclofenac.[35] It is more expensive than diclofenac, but the price is coming down as more drug companies begin to manufacture it.[36]

A paper based on joint research conducted by the Bombay Natural History Society, Royal Society for the Protection of Birds and Indian Veterinary Research Institute, published in May 2014 in the journal of the Cambridge University Press, highlighted that steppe eagles have same signs to that of vultures due to diclofenac and may fall prey to it.[37] Diclofenac has been shown also to harm freshwater fish species such as rainbow trout.[38][39][40][41] In contrast, New World vultures, such as the turkey vulture, can tolerate at least 100 times the level of diclofenac that is lethal to Gyps species.[42]

"The loss of tens of millions of vultures over the last decade has had major ecological consequences across the Indian Subcontinent that pose a potential threat to human health. In many places, populations of feral dogs (Canis familiaris) have increased sharply from the disappearance of Gyps vultures as the main scavenger of wild and domestic ungulate carcasses. Associated with the rise in dog numbers is an increased risk of rabies"[35] and casualties of almost 50,000 people.[43] The Government of India cites this as one of those major consequences of a vulture species extinction.[34] A major shift in transfer of corpse pathogens from vultures to feral dogs and rats could lead to a disease pandemic causing millions of deaths in a crowded country like India; whereas vultures’ digestive systems safely destroy many species of such pathogens.

The loss of vultures has had a social impact on the Indian Zoroastrian Parsi community, who traditionally use vultures to dispose of human corpses in Towers of Silence, but are now compelled to seek alternative methods of disposal.[35]

The resulting multiplication of feral dogs in India and Pakistan has caused a multiplication of leopards feeding on those dogs and invading urban areas looking for dogs as prey, resulting in occasional attacks on human children.[44]

Diclofenac has been recently authorised for use on cattle and pigs in Italy, and, since 2013, in Spain where 90% of European vultures live, and this product is now becoming widely available in other EU countries. [45]

Formulations

Pennsaid is a minimally systemic prescription topical lotion formulation of 1.5% w/w diclofenac sodium, which is approved in the US, Canada and other countries for osteoarthritis of the knee.

Flector Patch, a minimally systemic topical patch formulation of diclofenac, is indicated for acute pain due to minor sprains, strains, and contusions. The patch has been approved in many other countries outside the US under different brand names.

Voltaren and Voltarol contain the sodium salt of diclofenac. In the United Kingdom, Voltarol can be supplied with either the sodium salt or the potassium salt, while Cataflam, sold in some other countries, is the potassium salt only. However, Voltarol Emulgel contains diclofenac diethylammonium, in which a 1.16% concentration is equivalent to a 1% concentration of the sodium salt.

Diclofenac is available in stomach acid-resistant formulations (25 and 50 mg), fast-disintegrating oral formulations (25 and 50 mg), powder for oral solution (50 mg), slow- and controlled-release forms (75, 100 or 150 mg), suppositories (50 and 100 mg), and injectable forms (50 and 75 mg).

Diclofenac is also available over-the-counter in some countries: 12.5 mg diclofenac as potassium salt in Switzerland (Voltaren dolo), the Netherlands (Voltaren K), and preparations containing 25 mg diclofenac as the potassium salt in Germany (various trade names), New Zealand, Australia, Japan, (Voltaren Rapid), and Sweden (Voltaren T and Diclofenac T). Diclofenac as potassium salt can be found throughout the Middle East in 25-mg and 50-mg doses (Cataflam). Solaraze (3% diclofenac sodium gel) is topically applied, twice a day for three months, to manage the skin condition known as actinic or solar keratosis. Parazone-DP is combination of diclofenac potassium and paracetamol, manufactured and supplied by Ozone Pharmaceuticals and Chemicals, Gujarat,India.

On the 14th of january 2015, Diclofenac oral preparations were re-classified as Prescription Only Medicines in the UK. The topical preparations are still available without prescription.[46]

Diclofenac formulations are available worldwide under many different trade names.[47]

References

  1. novartis.com
  2. Breen EG, McNicholl J, Cosgrove E, McCabe J, Stevens FM (1986). "Fatal hepatitis associated with diclofenac". Gut 27 (11): 1390–3. PMC 1434053. PMID 3792922.
  3. Salmann AR (1986). "The history of diclofenac". Am. J. Med. 80 (4B): 29–33. doi:10.1016/0002-9343(86)90076-8.
  4. "Diclofenac Epolamine". The American Society of Health-System Pharmacists. Retrieved 3 April 2011.
  5. 5.0 5.1 "RUFENAL". Birzeit Pharmaceutical Company.
  6. cambiarx.com
  7. mayoclinic.com
  8. cbg-meb.nl, SPC Netherlands
  9. WHO's pain ladder for adults
  10. Mazumdar K, Dutta NK, Dastidar SG, Motohashi N, Shirataki Y (2006). "Diclofenac in the management of E. coli urinary tract infections". In Vivo 20 (5): 613–619. PMID 17091768.
  11. Dutta NK, Annadurai S, Mazumdar K, Dastidar SG, Kristiansen JE, Molnar J, Martins M, Amaral L (2007). "Potential management of resistant microbial infections with a novel non-antibiotic: the anti-inflammatory drug diclofenac sodium". Int. J. Antimicrob. Agents 30 (3): 242–249. doi:10.1016/j.ijantimicag.2007.04.018. PMID 17644318.
  12. Dutta NK, Mazumdar K, Dastidar SG, Park JH (2007). "Activity of diclofenac used alone and in combination with streptomycin against Mycobacterium tuberculosis in mice". Int. J. Antimicrob. Agents 30 (4): 336–340. doi:10.1016/j.ijantimicag.2007.04.016. PMID 17644321.
  13. Naidoo V, Swan GE (August 2008). "Diclofenac toxicity in Gyps vulture is associated with decreased uric acid excretion and not renal portal vasoconstriction". Comp. Biochem. Physiol. C Toxicol. Pharmacol. 149 (3): 269–74. doi:10.1016/j.cbpc.2008.07.014. PMID 18727958.
  14. drugs.com
  15. Kearney PM, Baigent C, Godwin J, Halls H, Emberson JR, Patrono C (2006). "Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials". BMJ 332 (7553): 1302–8. doi:10.1136/bmj.332.7553.1302. PMC 1473048. PMID 16740558.
  16. Solomon DH, Avorn J, Stürmer T, Glynn RJ, Mogun H, Schneeweiss S (2006). "Cardiovascular outcomes in new users of coxibs and nonsteroidal antiinflammatory drugs: high-risk subgroups and time course of risk". Arthritis Rheum 54 (5): 1378–89. doi:10.1002/art.21887. PMID 16645966.
  17. Fosbøl EL, Folke F, Jacobsen S, Rasmussen JN, Sørensen R, Schramm TK, Andersen SS, Rasmussen S, Poulsen HE, Køber L, Torp-Pedersen C, Gislason GH (2010). "Cause-Specific Cardiovascular Risk Associated With Nonsteroidal Antiinflammatory Drugs Among Healthy Individuals". Circ Cardiovasc Qual Outcomes 3 (4): 395–405. doi:10.1161/CIRCOUTCOMES.109.861104. PMID 20530789.
  18. BBC: Heart risk warning over painkiller diclofenac, 29 June 2013
  19. "Press release: Diclofenac tablets now only available as a prescription medicine". Medicines and Healthcare Products Regulatory Agency. January 14, 2015. Retrieved January 14, 2015.
  20. FitzGerald GA, Patrono C (2001). "The coxibs, selective inhibitors of cyclooxygenase-2". N Engl J Med 345 (6): 433–42. doi:10.1056/NEJM200108093450607. PMID 11496855.
  21. Graham DJ (2006). "COX-2 inhibitors, other NSAIDs, and cardiovascular risk: the seduction of common sense". JAMA 296 (13): 1653–6. doi:10.1001/jama.296.13.jed60058. PMID 16968830.
  22. fda.gov
  23. 23.0 23.1 Brater DC (2002). "Renal effects of cyclooxygyenase-2-selective inhibitors". J Pain Symptom Manage 23 (4 Suppl): S15–20; discussion S21–3. doi:10.1016/S0885-3924(02)00370-6. PMID 11992745.
  24. "Diclofenac Side Effects". Drugs.com. Retrieved 21 January 2013.
  25. NSAIDS, Aspirin & Infertility http://www.fertilityplus.com/faq/nsaids.html
  26. Infertility May Sometimes Be Associated with NSAID Consumption http://rheumatology.oxfordjournals.org/content/35/1/76.full.pdf
  27. www.merck.com/mmpe/sec11/ch131/ch131b.html?qt=diclofenac&alt=sh#sec11-ch131-ch131b-174
  28. ABC News: Study links Voltaren to strokes http://www.abc.net.au/news/stories/2010/09/14/3011102.htm
  29. Dastidar SG, Ganguly K, Chaudhuri K, Chakrabarty AN (2000). "The anti-bacterial action of diclofenac shown by inhibition of DNA synthesis". Int. J. Antimicrob. Agents 14 (3): 249–51. doi:10.1016/S0924-8579(99)00159-4. PMID 10773497.
  30. Fowler PD, Shadforth MF, Crook PR, John VA (1983). "Plasma and synovial fluid concentrations of diclofenac sodium and its major hydroxylated metabolites during long-term treatment of rheumatoid arthritis". Eur. J. Clin. Pharmacol. 25 (3): 389–94. doi:10.1007/BF01037953. PMID 6628528.
  31. Scholer. Pharmacology of Diclofenac Sodium. Am J of Medicine Volume 80 April 28, 1986
  32. Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Chaudhry MJ, Arshad M, Mahmood S, Ali A, Khan AA (2004). "Diclofenac residues as the cause of vulture population decline in Pakistan". Nature 427 (6975): 630–3. Bibcode:2004Natur.427..630O. doi:10.1038/nature02317. PMID 14745453.
  33. "Vet drug 'killing Asian vultures'". BBC News. 2004-02-28.
  34. 34.0 34.1 "Saving the Vultures from Extinction" (Press release). Press Information Bureau, Government of India. 2005-05-16. Retrieved 2006-05-12.
  35. 35.0 35.1 35.2 Swan G, Naidoo V, Cuthbert R, Green RE, Pain DJ, Swarup D, Prakash V, Taggart M, Bekker L, Das D, Diekmann J, Diekmann M, Killian E, Meharg A, Patra RC, Saini M, Wolter K (2006). "Removing the threat of diclofenac to critically endangered Asian vultures". PLoS Biol 4 (3): e66. doi:10.1371/journal.pbio.0040066. PMC 1351921. PMID 16435886.
  36. Gill, V. New drug threat to Asian vultures BBC News December 9, 2009.
  37. Phadnis, Mayuri (May 28, 2014). "Eagles fall prey to vulture-killing chemical". Pune Mirror. Retrieved May 28, 2014.
  38. Schwaiger J, Ferling H, Mallow U, Wintermayr H, Negele RD (2004). "Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: Histopathological alterations and bioaccumulation in rainbow trout". Aquat. Toxicol 68 (2): 141–150. doi:10.1016/j.aquatox.2004.03.014. PMID 15145224.
  39. Triebskorn R, Casper H, Heyd A, Eikemper R, Köhler HR, Schwaiger J (2004). "Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part II: Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss)". Aquat. Toxicol 68 (2): 151–166. doi:10.1016/j.aquatox.2004.03.015. PMID 15145225.
  40. Schwaiger & Triebskorn (2005). UBA-Berichte 29/05: 217-226.
  41. Triebskorn R, Casper H, Scheil V, Schwaiger J (2007). "Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio)". Anal Bioanal Chem 387 (4): 1405–16. doi:10.1007/s00216-006-1033-x. PMID 17216161.
  42. Rattner BA, Whitehead MA, Gasper G, Meteyer CU, Link WA, Taggart MA, Meharg AA, Pattee OH, Pain DJ (2009). "Apparent tolerance of turkey vultures (Cathartes aura) to the non-steroidal anti-inflammatory drug diclofenac". Environmental Toxicology and Chemistry 27 (11): 2341–2345. doi:10.1897/08-123.1. PMID 18476752.
  43. Rabies follows disruption in food cycle
  44. Nature Shock, UK Channel 5 television, Tuesday 7 Sept 2010,8 to 9 pm.
  45. Vulture killing drug now available on EU market
  46. https://www.gov.uk/drug-device-alerts/drug-alert-oral-diclofenac-presentations-with-legal-status-p-reclassified-to-pom
  47. Drugs.com Diclofenac international availability

External links

Wikimedia Commons has media related to Diclofenac.