Del in cylindrical and spherical coordinates

Help resolve this verification problem at Wikiversity.

This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.

Notes

Formulae

Table with the del operator in cylindrical, spherical and parabolic cylindrical coordinates
Operation Cartesian coordinates (x, y, z) Cylindrical coordinates (ρ, ϕ, z) Spherical coordinates (r, θ, ϕ) Parabolic cylindrical coordinates (σ, τ, z)
Definition
of
coordinates
\begin{align}
\rho &= \sqrt{x^2+y^2} \\
\phi &= \arctan(y/x) \\
z    &= z \end{align} \begin{align}
x &= \rho\cos\phi \\
y &= \rho\sin\phi \\
z &= z \end{align} \begin{align}
x &= r\sin\theta\cos\phi \\
y &= r\sin\theta\sin\phi \\
z &= r\cos\theta \end{align} \begin{align}
x &= \sigma \tau\\
y &= \tfrac{1}{2} \left( \tau^{2} - \sigma^{2} \right) \\
z &= z \end{align}
\begin{align}
r      &= \sqrt{x^2+y^2+z^2} \\
\theta &= \arccos(z/r)\\
\phi   &= \arctan(y/x) \end{align} \begin{align}
r      &= \sqrt{\rho^2 + z^2} \\
\theta &= \arctan{(\rho/z)}\\
\phi   &= \phi \end{align} \begin{align}
\rho &= r\sin\theta \\
\phi &= \phi\\
z    &= r\cos\theta \end{align} \begin{align}
\rho\cos\phi &= \sigma \tau\\
\rho\sin\phi &= \tfrac{1}{2} \left( \tau^{2} - \sigma^{2} \right) \\
z &= z \end{align}
Definition
of
unit
vectors
\begin{align}
\boldsymbol{\hat{\rho}} &= \frac{  x \hat{\mathbf x} + y \hat{\mathbf y}}{\sqrt{x^2+y^2}} \\
\boldsymbol{\hat{\phi}} &= \frac{- y \hat{\mathbf x} + x \hat{\mathbf y}}{\sqrt{x^2+y^2}} \\
\mathbf{\hat{z}}       &= \mathbf{\hat{z}}
\end{align} \begin{align}
\hat{\mathbf x} &= \cos\phi\boldsymbol{\hat{\rho}} - \sin\phi\boldsymbol{\hat{\phi}} \\
\hat{\mathbf y} &= \sin\phi\boldsymbol{\hat{\rho}} + \cos\phi\boldsymbol{\hat{\phi}} \\
\mathbf{\hat{z}} &= \mathbf{\hat{z}}
\end{align} \begin{align}
\hat{\mathbf x} &= \sin\theta\cos\phi\boldsymbol{\hat{r}} + \cos\theta\cos\phi\boldsymbol{\hat{\theta}}-\sin\phi\boldsymbol{\hat{\phi}} \\
\hat{\mathbf y} &= \sin\theta\sin\phi\boldsymbol{\hat{r}} + \cos\theta\sin\phi\boldsymbol{\hat{\theta}}+\cos\phi\boldsymbol{\hat{\phi}} \\
\mathbf{\hat{z}} &= \cos\theta        \boldsymbol{\hat{r}} - \sin\theta        \boldsymbol{\hat{\theta}}
\end{align} \begin{align}
\boldsymbol{\hat{\sigma}} &= \frac{\tau \hat{\mathbf x} - \sigma \hat{\mathbf y}}{\sqrt{\tau^2+\sigma^2}} \\
\boldsymbol{\hat{\tau}}   &= \frac{\sigma \hat{\mathbf x} + \tau \hat{\mathbf y}}{\sqrt{\tau^2+\sigma^2}} \\
\mathbf{\hat{z}}         &= \mathbf{\hat{z}}
\end{align}
\begin{align}
\mathbf{\hat{r}}         &= \frac{x \hat{\mathbf x} + y \hat{\mathbf y} + z \mathbf{\hat{z}}}{\sqrt{x^2+y^2+z^2}} \\
\boldsymbol{\hat{\theta}} &= \frac{x z \hat{\mathbf x} + y z \hat{\mathbf y} - \left(x^2 + y^2\right) \mathbf{\hat{z}}}{\sqrt{x^2+y^2} \sqrt{x^2+y^2+z^2}} \\
\boldsymbol{\hat{\phi}}   &= \frac{- y \hat{\mathbf x} + x \hat{\mathbf y}}{\sqrt{x^2+y^2}}
\end{align} \begin{align}
\mathbf{\hat{r}}         &= \frac{\rho \boldsymbol{\hat{\rho}} +    z \mathbf{\hat{z}}}{\sqrt{\rho^2 +z^2}} \\
\boldsymbol{\hat{\theta}} &= \frac{   z \boldsymbol{\hat{\rho}} - \rho \mathbf{\hat{z}}}{\sqrt{\rho^2 +z^2}} \\
\boldsymbol{\hat{\phi}}   &= \boldsymbol{\hat{\phi}}
\end{align} \begin{align}
\boldsymbol{\hat{\rho}} &= \sin\theta \mathbf{\hat{r}} + \cos\theta \boldsymbol{\hat{\theta}} \\
\boldsymbol{\hat{\phi}} &= \boldsymbol{\hat{\phi}} \\
\mathbf{\hat{z}}       &= \cos\theta \mathbf{\hat{r}} - \sin\theta \boldsymbol{\hat{\theta}}
\end{align} \begin{matrix}
\end{matrix}
A vector field \mathbf A A_x      \hat{\mathbf x}         + A_y      \hat{\mathbf y}         + A_z    \mathbf{\hat{z}} A_\rho   \boldsymbol{\hat{\rho}}   + A_\phi   \boldsymbol{\hat{\phi}}   + A_z    \mathbf{\hat{z}} A_r      \boldsymbol{\hat{r}}     + A_\theta \boldsymbol{\hat{\theta}} + A_\phi \boldsymbol{\hat{\phi}} A_\sigma \boldsymbol{\hat{\sigma}} + A_\tau   \boldsymbol{\hat{\tau}}   + A_\phi \mathbf{\hat{z}}
f scalar field Gradient \nabla f {\partial f \over \partial x}\hat{\mathbf x} + {\partial f \over \partial y}\hat{\mathbf y}
+ {\partial f \over \partial z}\mathbf{\hat{z}} {\partial f \over \partial \rho}\boldsymbol{\hat{\rho}}
+ {1 \over \rho}{\partial f \over \partial \phi}\boldsymbol{\hat{\phi}}
+ {\partial f \over \partial z}\mathbf{\hat{z}} {\partial f \over \partial r}\boldsymbol{\hat{r}}
+ {1 \over r}{\partial f \over \partial \theta}\boldsymbol{\hat{\theta}}
+ {1 \over r\sin\theta}{\partial f \over \partial \phi}\boldsymbol{\hat{\phi}}  \frac{1}{\sqrt{\sigma^{2} + \tau^{2}}} {\partial f \over \partial \sigma}\boldsymbol{\hat{\sigma}} + \frac{1}{\sqrt{\sigma^{2} + \tau^{2}}} {\partial f \over \partial \tau}\boldsymbol{\hat{\tau}} + {\partial f \over \partial z}\mathbf{\hat{z}}
Divergence \nabla \cdot \mathbf{A} {\partial A_x \over \partial x} + {\partial A_y \over \partial y} + {\partial A_z \over \partial z} {1 \over \rho}{\partial \left( \rho A_\rho  \right) \over \partial \rho}
+ {1 \over \rho}{\partial A_\phi \over \partial \phi}
+ {\partial A_z \over \partial z} {1 \over r^2}{\partial \left( r^2 A_r \right) \over \partial r}
+ {1 \over r\sin\theta}{\partial \over \partial \theta} \left(  A_\theta\sin\theta \right)
+ {1 \over r\sin\theta}{\partial A_\phi \over \partial \phi}  \frac{1}{\sigma^{2} + \tau^{2}}\left({\partial (\sqrt{\sigma^2+\tau^2} A_\sigma) \over \partial \sigma} + {\partial (\sqrt{\sigma^2+\tau^2} A_\tau) \over \partial \tau}\right) + {\partial A_z \over \partial z}
Curl \nabla \times \mathbf{A} \begin{align}
  \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) &\hat{\mathbf x} + \\
+ \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) &\hat{\mathbf y} + \\
+ \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) &\mathbf{\hat{z}}
\end{align} \begin{align}
  \left(
    \frac{1}{\rho} \frac{\partial A_z}{\partial \phi}
  - \frac{\partial A_\phi}{\partial z}
  \right) &\boldsymbol{\hat{\rho}} \\
+ \left(
    \frac{\partial A_\rho}{\partial z}
  - \frac{\partial A_z}{\partial \rho}
  \right) &\boldsymbol{\hat{\phi}} \\
+ \frac{1}{\rho} \left(
    \frac{\partial \left(\rho A_\phi\right)}{\partial \rho}
  - \frac{\partial A_\rho}{\partial \phi}
  \right) &\mathbf{\hat{z}}
\end{align} \begin{align}
  \frac{1}{r\sin\theta} \left(
    \frac{\partial}{\partial \theta} \left(A_\phi\sin\theta \right)
  - \frac{\partial A_\theta}{\partial \phi}
  \right) &\boldsymbol{\hat{r}} \\
+ \frac{1}{r} \left(
    \frac{1}{\sin\theta} \frac{\partial A_r}{\partial \phi}
  - \frac{\partial}{\partial r} \left( r A_\phi \right)
  \right) &\boldsymbol{\hat{\theta}}  \\
+ \frac{1}{r} \left(
    \frac{\partial}{\partial r} \left( r A_\theta \right)
  - \frac{\partial A_r}{\partial \theta}
  \right) &\boldsymbol{\hat{\phi}}
\end{align} \begin{align}
  \left(
    \frac{1}{\sqrt{\sigma^2 + \tau^2}} \frac{\partial A_z}{\partial \tau}
  - \frac{\partial A_\tau}{\partial z}
  \right) &\boldsymbol{\hat{\sigma}} \\
- \left(
    \frac{1}{\sqrt{\sigma^2 + \tau^2}} \frac{\partial A_z}{\partial \sigma}
  - \frac{\partial A_\sigma}{\partial z}
  \right) &\boldsymbol{\hat{\tau}} \\
+ \frac{1}{\sqrt{\sigma^2 + \tau^2}} \left(
    \frac{\partial \left(\sqrt{\sigma^2 + \tau^2} A_\sigma \right)}{\partial \tau}
  - \frac{\partial \left(\sqrt{\sigma^2 + \tau^2} A_\tau \right)}{\partial \sigma}
  \right) &\mathbf{\hat{z}}
\end{align}
Laplace operator \Delta f \equiv \nabla^2 f {\partial^2 f \over \partial x^2} + {\partial^2 f \over \partial y^2} + {\partial^2 f \over \partial z^2} {1 \over \rho}{\partial \over \partial \rho}\left(\rho {\partial f \over \partial \rho}\right)
+ {1 \over \rho^2}{\partial^2 f \over \partial \phi^2}
+ {\partial^2 f \over \partial z^2} {1 \over r^2}{\partial \over \partial r}\!\left(r^2 {\partial f \over \partial r}\right)
\!+\!{1 \over r^2\!\sin\theta}{\partial \over \partial \theta}\!\left(\sin\theta {\partial f \over \partial \theta}\right)
\!+\!{1 \over r^2\!\sin^2\theta}{\partial^2 f \over \partial \phi^2}  \frac{1}{\sigma^{2} + \tau^{2}}
\left(  \frac{\partial^{2} f}{\partial \sigma^{2}} +
\frac{\partial^{2} f}{\partial \tau^{2}} \right) +
\frac{\partial^{2} f}{\partial z^{2}}
Vector Laplacian \Delta \mathbf{A} \equiv \nabla^2 \mathbf{A} \Delta A_x \hat{\mathbf x} + \Delta A_y \hat{\mathbf y} + \Delta A_z \mathbf{\hat{z}}
Material derivative[1]

(\mathbf{A} \cdot \nabla) \mathbf{B}

\mathbf{A} \cdot \nabla B_x \hat{\mathbf x} + \mathbf{A} \cdot \nabla B_y \hat{\mathbf y} + \mathbf{A} \cdot \nabla B_z \hat{\mathbf{z}}
Differential displacement d\mathbf{l} = dx \, \hat{\mathbf x} + dy \, \hat{\mathbf y} + dz \, \mathbf{\hat{z}} d\mathbf{l} = d\rho \, \boldsymbol{\hat{\rho}} + \rho \, d\phi \, \boldsymbol{\hat{\phi}} + dz \, \mathbf{\hat{z}} d\mathbf{l} = dr \, \mathbf{\hat{r}} + r \, d\theta \, \boldsymbol{\hat{\theta}} + r \, \sin\theta \, d\phi \, \boldsymbol{\hat{\phi}} d\mathbf{l} = \sqrt{\sigma^2 + \tau^2} \,  d\sigma \, \boldsymbol{\hat{\sigma}} + \sqrt{\sigma^2 + \tau^2} \, d\tau \, \boldsymbol{\hat{\tau}} + dz \, \mathbf{\hat{z}}
Differential normal area d \mathbf S \begin{align}
  dy \, dz &\hat{\mathbf x} \\
+ dx \, dz &\hat{\mathbf y} \\
+ dx \, dy &\mathbf{\hat{z}}
\end{align} \begin{align}
  \rho \, d\phi \, dz    &\boldsymbol{\hat{\rho}} \\
+         d\rho \, dz    &\boldsymbol{\hat{\phi}} \\
+ \rho \, d\rho \, d\phi &\mathbf{\hat{z}}
\end{align} \begin{align}
  r^2 \sin\theta \, d\theta \, d\phi   &\mathbf{\hat{r}} \\
+ r   \sin\theta \, dr      \, d\phi   &\boldsymbol{\hat{\theta}} \\
+ r              \, dr      \, d\theta &\boldsymbol{\hat{\phi}}
\end{align} \begin{align}
  \sqrt{\sigma^2 + \tau^2}       \, d\tau   \, dz    &\boldsymbol{\hat{\sigma}} \\
+ \sqrt{\sigma^2 + \tau^2}       \, d\sigma \, dz    &\boldsymbol{\hat{\tau}} \\
+ \left(\sigma^2 + \tau^2\right) \, d\sigma \, d\tau &\mathbf{\hat{z}}
\end{align}
Differential volume dV dx \, dy \, dz \rho \, d\rho \, d\phi \, dz r^2 \sin\theta \, dr \, d\theta \, d\phi \left(\sigma^2 + \tau^2\right) d\sigma \, d\tau \, dz
Non-trivial calculation rules:
  1. \operatorname{div}  \, \operatorname{grad} f          \equiv \nabla \cdot  \nabla f = \nabla^2 f \equiv \Delta f
  2. \operatorname{curl} \, \operatorname{grad} f          \equiv \nabla \times \nabla f = \mathbf 0
  3. \operatorname{div}  \, \operatorname{curl} \mathbf{A} \equiv \nabla \cdot  (\nabla \times \mathbf{A}) = 0
  4. \operatorname{curl} \, \operatorname{curl} \mathbf{A} \equiv \nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} (Lagrange's formula for del)
  5. \Delta (f g) = f \Delta g + 2 \nabla f \cdot \nabla g + g \Delta f

See also

References

  1. Weisstein, Eric W. "Convective Operator". Mathworld. Retrieved 23 March 2011.

External links