DIDO (software)

DIDO is a MATLAB optimal control tool for solving general-purpose hybrid optimal control problems.[1] Powered by the pseudospectral optimal control theory of Ross and Fahroo,[2] the general-purpose optimal control program is named after Dido, the legendary founder and first queen of Carthage who is famous in mathematics for her remarkable solution to a constrained optimal control problem even before the invention of calculus.

Theory

Based on pseudospectral optimal control theory founded by Ross and his associates,[3] DIDO utilizes unique expressions and objects that facilitate one to formulate and solve optimal control problems in a manner that is similar to writing the problem on a piece of paper.[4] The covector mapping principle of Ross and Fahroo eliminates traditional difficulties in solving for the costates in optimal control problems; thus, DIDO generates spectrally accurate solutions [5] whose extremality can be verified using Pontryagin's Minimum Principle.[6] Because no knowledge of pseudospectal methods is necessary to use DIDO, it is often used as a mathematical tool for solving optimal control problems. That is, a solution obtained from DIDO is treated as a candidate solution for the application of Pontryagin's minimum principle as a necessary condition.

Applications

DIDO is used world wide in academia, industry and government laboratories.[7] Thanks to NASA, DIDO was flight-proven in 2006.[3] On November 5, 2006, NASA used DIDO to maneuver the International Space Station to perform the Zero Propellant Maneuver. The Zero Propellant Maneuver was discovered by Nazareth Bedrossian using DIDO. Watch a video of this historic maneuver.

History

Invented by Ross, DIDO was first produced in 2001[8] and has many firsts to its credit:[2] [9] [10] [11] [12] [13] [14]

Versions

DIDO is a professional optimal control solver; however, several different versions of DIDO are available:

In addition the complete source code for DIDO is also available so that an end user may customize it for any application.

See also

References

  1. Ross, I. M. and D’Souza, C. N., A Hybrid Optimal Control Framework for Mission Planning, Journal of Guidance, Control and Dynamics, Vol. 28, No. 4, July–August 2005, pp. 686–697.
  2. 2.0 2.1 Ross, I. M. and Fahroo, F., Pseudospectral Knotting Methods for Solving Optimal Control Problems, Journal of Guidance, Control and Dynamics, Vol. 27, No. 3, pp. 397–405, 2004.
  3. 3.0 3.1 I. M. Ross and M. Karpenko, "A Review of Pseudospectral Optimal Control: From Theory to Flight," Annual Reviews in Control, Vol. 36, pp. 182–197, 2012. http://www.sciencedirect.com/science/article/pii/S1367578812000375
  4. A. M. Hawkins, Constrained Trajectory Optimization of a Soft Lunar Landing From a Parking Orbit, S.M. Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2005. http://dspace.mit.edu/handle/1721.1/32431
  5. Gong, Q., Fahroo, F. and Ross, I. M., A Spectral Algorithm for Pseudospectral Methods in Optimal Control, Journal of Guidance, Control and Dynamics, Vol. 31, No. 3, pp. 460–471, 2008.
  6. Ross, I. M. A Primer on Pontryagin's Principle in Optimal Control, Collegiate Publishers, San Francisco, 2009.
  7. Q. Gong, W. Kang, N. Bedrossian, F. Fahroo, P. Sekhavat and K. Bollino, Pseudospectral Optimal Control for Military and Industrial Applications, 46th IEEE Conference on Decision and Control, New Orleans, LA, pp. 4128-4142, Dec. 2007.
  8. J. R. Rea, A Legendre Pseudospectral Method for Rapid Optimization of Launch Vehicle Trajectories, S.M. Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Institute of Technology, 2001. http://dspace.mit.edu/handle/1721.1/8608
  9. F. Fahroo, D. B. Doman, and A. D. Ngo, "Modeling Issues in Footprint Generation of Resuable Launch Vehicles," Proceedings of the IEEE Aerospace Conference, Vol. 6, 2003, pp. 2791-2799.
  10. W. Kang and N. Bedrossian, "Pseudospectral Optimal Control Theory Makes Debut Flight, Saves nasa $1m in Under Three Hours," SIAM News, 40, 2007.
  11. B. Honegger, "NPS Professor's Software Breakthrough Allows Zero-Propellant Maneuvers in Space." Navy.mil. United States Navy. April 20, 2007. (Sept. 11, 2011) http://www.elissarglobal.com/wp-content/uploads/2011/07/Navy_News.pdf.
  12. S. Josselyn and I. M. Ross, "A Rapid Verification Method for the Trajectory Optimization of Reentry Vehicles," Journal of Guidance, Control and Dynamics, Vol. 26, No. 3, 2003, pp.505-508.
  13. National Aeronautics and Space Administration. "Fact Sheet: International Space Station Zero-Propellant Maneuver (ZPM) Demonstration." June 10, 2011. (Sept. 13, 2011) http://www.nasa.gov/mission_pages/station/research/experiments/ZPM.html
  14. L. Keesey, "TRACE Spacecraft's New Slewing Procedure." NASA's Goddard Space Flight Center. National Aeronautics and Space Administration. Dec. 20, 2010. (Sept. 11, 2011) http://www.nasa.gov/mission_pages/sunearth/news/trace-slew.html.

Further reading

External links