Cycloheptanone

Cycloheptanone
Names
IUPAC name
Cycloheptanone
Other names
Suberone
Identifiers
502-42-1 Yes
ChEMBL ChEMBL18607 Yes
ChemSpider 9971 Yes
Jmol-3D images Image
PubChem 10400
Properties
Molecular formula
C7H12O
Molar mass 112.17 g·mol−1
Appearance Colorless liquid
Density 0.949 g/cm3 (20 °C)[1]
Boiling point 179 to 181 °C (354 to 358 °F; 452 to 454 K)[1]
Insoluble
Hazards
R-phrases R41[2]
S-phrases S23 S24/25 S26 S39[2]
Flash point 56 °C (133 °F; 329 K)[2]
Related compounds
Related cyclic ketones
Cyclohexanone, Cyclooctanone, Tropinone
Except where noted otherwise, data is given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 Yes verify (what is: Yes/?)
Infobox references

Cycloheptanone, (CH2)6CO, is a cyclic ketone also referred to as suberone. It is a colourless volatile liquid. Cycloheptanone is used as a precursor for the synthesis of pharmaceuticals.

Synthesis

In 1836, French chemist Jean-Baptiste Boussingault first synthesized cycloheptanone from the calcium salt of dibasic suberic acid. The destructive distillation of calcium suberate yields calcium carbonate and suberone:[3]

Ca(O2C(CH2)6CO2) → CaCO3 + (CH2)6CO

Cycloheptanone is still produced by the cyclization and decarboxylation of suberic acid or suberic acid esters. This reaction is typically conducted in the gas phase at 400–450 °C over alumina doped with zinc oxide or cerium oxide.[4]

Cycloheptanone is also produced by the reaction of cyclohexanone with sodium ethoxide and nitromethane. The resulting sodium salt of 1-(nitromethyl)cyclohexanol is added to acetic acid and shaken with hydrogen gas in the presence of W-4 Raney nickel catalyst. Sodium nitrite and acetic acid are then added to give cycloheptanone.[5]

Cycloheptanone is also prepared by ring expansion of cyclohexanone with diazomethane as the methylene source.[5]

Uses and reactions

Cycloheptanone has no direct applications, but is a precursor to other compounds. Bencyclane, a spasmolytic agent and vasodilator is produced from it, for example.[4] Pimelic acid is produced by the oxidative cleavage of cycloheptanone.[6] Dicarboxylic acids such as pimelic acid are useful for the preparation of fragrances and certain polymers.[7]

Several microorganisms, including Mucor plumbeus, Mucor racemosus, and Penicillium chrysogenum, have been found to reduce cycloheptanone to cycloheptanol. These microorganisms have been investigated for use in certain stereospecific enzymatic reactions.[8]

References

  1. 1.0 1.1 The Merck Index, 11th Edition, 2728
  2. 2.0 2.1 2.2 Cycloheptanone at Sigma-Aldrich
  3. Thorpe, T. E. (1912). A Dictionary of Applied Chemistry. LCCN 12009914.
  4. 4.0 4.1 Siegel, H.; Eggersdorfer, M. (2005), "Ketones", Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, doi:10.1002/14356007.a15_077
  5. 5.0 5.1 Dauben, H. J. Jr.; Ringold, H. J.; Wade, R. H.; Pearson, D. L.; Anderson, A. G. Jr. (1954). "Cycloheptanone". Org. Synth. 34: 19.; Coll. Vol. 4, p. 221
  6. Cornils, B.; Lappe, P. (2005), "Dicarboxylic Acids, Aliphatic", Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, doi:10.1002/14356007.a08_523.pub2
  7. "Dicarboxylic Acids". cyberlipids.org.
  8. Lemiere, G. L.; Alderweireldt, F. C.; Voets, J. P. (1975). "Reduction of cycloalkanones by several microorganisms". Zeitschrift für Allgemeine Mikrobiologie 15 (2): 89–92. doi:10.1002/jobm.19750150204.