Corundum

Corundum
General
Category Oxide mineral – Hematite group
Formula
(repeating unit)
Aluminium oxide, Al
2
O
3
Strunz classification 04.CB.05
Dana classification 4.3.1.1
Crystal symmetry Trigonal (32/m)
Unit cell a = 4.75 Å, c = 12.982 Å; Z=6
Identification
Color Colorless, gray, brown; pink to red, orange, yellow, green, blue, violet; may be color zoned, asteriated mainly grey and brown
Crystal habit Steep bipyramidal, tabular, prismatic, rhombohedral crystals, massive or granular
Crystal system Trigonal (Hexagonal Scalenohedral)
Symbol (32/m)
Space group: R3c
Twinning Polysynthetic twinning common
Cleavage None – parting in 3 directions
Fracture Conchoidal to uneven
Tenacity Brittle
Mohs scale hardness 9 (defining mineral)[1]
Luster Adamantine to vitreous
Streak White
Diaphaneity Transparent, translucent to opaque
Specific gravity 3.95–4.10
Optical properties Uniaxial (–)
Refractive index nω = 1.767–1.772
nε = 1.759–1.763
Pleochroism None
Melting point 2044 °C
Fusibility Infusible
Solubility Insoluble
Alters to May alter to mica on surfaces causing a decrease in hardness
Other characteristics May fluoresce or phosphoresce under UV light
References [2][3][4][5]
Major varieties
Sapphire Any color except red
Ruby Red
Emery Black granular corundum intimately mixed with magnetite, hematite, or hercynite

Corundum is a crystalline form of aluminium oxide (Al
2
O
3
) with traces of iron, titanium and chromium.[2] It is a rock-forming mineral. It is one of the naturally transparent materials, but can have different colors when impurities are present. Transparent specimens are used as gems, called ruby if red and padparadscha if pink-orange. All other colors are called sapphire, e.g., "green sapphire" for a green specimen.

The name "corundum" is derived from Tamil word Kuruvindam or Sanskrit word Kuruvinda meaning ruby.[6]

Because of corundum's hardness (pure corundum is defined to have 9.0 Mohs), it can scratch almost every other mineral. It is commonly used as an abrasive on everything from sandpaper to large machines used in machining metals, plastics, and wood. Some emery is a mix of corundum and other substances, and the mix is less abrasive, with an average Mohs hardness of 8.0.

In addition to its hardness, corundum is unusual for its density of 4.02 g/cm3, which is very high for a transparent mineral composed of the low-atomic mass elements aluminium and oxygen.[7]

Geology and occurrence

Corundum from Brazil, size about 2 cm × 3 cm (0.8 in × 1 in).

Corundum occurs as a mineral in mica schist, gneiss, and some marbles in metamorphic terranes. It also occurs in low silica igneous syenite and nepheline syenite intrusives. Other occurrences are as masses adjacent to ultramafic intrusives, associated with lamprophyre dikes and as large crystals in pegmatites.[5] It commonly occurs as a detrital mineral in stream and beach sands because of its hardness and resistance to weathering.[5] The largest documented single crystal of corundum measured about 65×40×40 cm (26×16×16 in), and weighed 152 kg (335 lb).[8] The record has since been surpassed by certain synthetic boules.[9]

Corundum for abrasives is mined in Zimbabwe, Russia, Sri Lanka and India. Historically it was mined from deposits associated with dunites in North Carolina, USA and from a nepheline syenite in Craigmont, Ontario.[5] Emery grade corundum is found on the Greek island of Naxos and near Peekskill, New York, USA. Abrasive corundum is synthetically manufactured from bauxite.[5] Four corundum axes dating back to 2500 BCE from the Liangzhou culture have been discovered in China. The surfaces of the axes are remarkably smoothly polished.[10]

Synthetic corundum

In 1837, Marc Antoine Gaudin made the first synthetic rubies by fusing alumina at a high temperature with a small amount of chromium as a pigment.[11] In 1847, Ebelmen made white synthetic sapphires by fusing alumina in boric acid. In 1877 Frenic and Freil made crystal corundum from which small stones could be cut. Frimy and Auguste Verneuil manufactured artificial ruby by fusing BaF
2
and Al
2
O
3
with a little chromium at temperatures above 2,000 °C (3,632 °F). In 1903, Verneuil announced he could produce synthetic rubies on a commercial scale using this flame fusion process.[12]

The Verneuil process allows the production of flawless single-crystal sapphires, rubies and other corundum gems of much larger size than normally found in nature. It is also possible to grow gem-quality synthetic corundum by flux-growth and hydrothermal synthesis. Because of the simplicity of the methods involved in corundum synthesis, large quantities of these crystals have become available on the market causing a significant reduction of price in recent years. Apart from ornamental uses, synthetic corundum is also used to produce mechanical parts (tubes, rods, bearings, and other machined parts), scratch-resistant optics, scratch-resistant watch crystals, instrument windows for satellites and spacecraft (because of its transparency in the ultraviolet to infrared range), and laser components.

Structure and physical properties

Crystal structure of corundum
Molar volume vs. pressure at room temperature.

Corundum crystallizes with trigonal symmetry in the space group R3c and has the lattice parameters a = 4.75 Å and c = 12.982 Å at standard conditions. The unit cell contains six formula units.

In the lattice of corundum, the oxygen atoms form a slightly distorted hexagonal close packing in which two thirds of the gaps between the octahedra are occupied by aluminum ions.


References

Wikimedia Commons has media related to Corundum.
  1. "Mohs' scale of hardness". Collector's corner. Mineralogical Society of America. Retrieved 10 January 2014.
  2. 2.0 2.1 Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W. and Nichols, Monte C., ed. (1997). "Corundum". Handbook of Mineralogy (PDF). III(Halides, Hydroxides, Oxides). Chantilly, VA, US: Mineralogical Society of America. ISBN 0962209724.
  3. Corundum. Mindat.org
  4. Corundum. Webmineral
  5. 5.0 5.1 5.2 5.3 5.4 Hurlbut, Cornelius S.; Klein, Cornelis, 1985, Manual of Mineralogy, 20th ed., Wiley, pp. 300–302 ISBN 0-471-80580-7
  6. Harper, Douglas. "corundum". Online Etymology Dictionary.
  7. The Mineral Corundum. galleries.com
  8. Rickwood, P. C. (1981). "The largest crystals" (PDF). American Mineralogist 66: 885–907.
  9. Rubicon Technology Grows 200kg “Super Boule”, LED Inside, April 21, 2009
  10. "Chinese made first use of diamond". BBC. BBC. May 2005.
  11. Duroc-Danner, J. M. (2011). "Untreated yellowish orange sapphire exhibiting its natural colour" (PDF). Journal of Gemmology 32: 175–178. doi:10.15506/jog.2011.32.5.174.
  12. "Bahadur: a Handbook of Precious Stones". 1943. Retrieved 2007-08-19.