Conductive textile

A conductive textile is a fabric which can conduct electricity. Conductive textiles can be made with metal strands woven into the construction of the textile. There is also an interest in semiconducting textiles, made by impregnating normal textiles with carbon- or metal-based powders.[1]

Conductive fibers consist of a non-conductive or less conductive substrate, which is then either coated or embedded with electrically conductive elements, often carbon, nickel, copper, gold, silver, or titanium. Substrates typically include cotton, polyester, nylon, and stainless steel to high performance fibers such as aramids and PBO. Straddling the worlds of textiles and wires, conductive fibers are sold either by weight or length, and measured in denier or AWG.

Because of the rapid growth in the kinds of conductive fibers and the uses of these fibers, a trade association has been formed to increase awareness, utilization, and possibly standarize terminology. The association is Conductive Fiber Manufacturers Council.[2]

Applications

Uses for conductive fibers and textiles may include static dissipation, EMI shielding,[3] signal and power transfer in low resistance versions, and as a heating element in higher resistance versions. Their benefits over solid or stranded metal wires come from conductive fibers' flexibility and ability to use them in existing textile and wire machinery (weaving, knitting, braiding, etc.) One major use is by Micro_Coax's ARACON (tm) fiber built on a Kevlar (r) base, and used for shielding aircraft, space and other specialty cables where light-weight, high strength, and high frequency shielding is imperative. Another more recent use is in the production of 'Stun gun' or Taser proof clothing, where the conductive textile is used as a sort of Faraday shield in a layer of the garment in question. Conductive fabric can also be used to make electrodes for EEG and other medical applications;[4] such electrodes were used in a commercially-available sleep-monitoring device made by former company Zeo, Inc. Highly conductive stainless steel fiber is available.[5]

References

  1. http://www.techexchange.com/thelibrary/smarttextiles.html
  2. http://www.cfibermfg.com
  3. http://www.fibtex.lodz.pl/48_13_47.pdf
  4. US patent 20080127978 A1: Pressure support system with dry electrode sleep staging device
  5. Skotheim, Terje A. Handbook of Conducting Polymers, 2nd ed., CRC Press, 1997, p993

See also