Cohomological dimension

In abstract algebra, cohomological dimension is an invariant of a group which measures the homological complexity of its representations. It has important applications in geometric group theory, topology, and algebraic number theory.

Cohomological dimension of a group

As most (co)homological invariants, the cohomological dimension involves a choice of a "ring of coefficients" R, with a prominent special case given by R = Z, the ring of integers. Let G be a discrete group, R a non-zero ring with a unit, and RG the group ring. The group G has cohomological dimension less than or equal to n, denoted cdR(G)  n, if the trivial RG-module R has a projective resolution of length n, i.e. there are projective RG-modules P0, …, Pn and RG-module homomorphisms dk: Pk\toPk  1 (k = 1, …, n) and d0: P0\toR, such that the image of dk coincides with the kernel of dk  1 for k = 1, …, n and the kernel of dn is trivial.

Equivalently, the cohomological dimension is less than or equal to n if for an arbitrary RG-module M, the cohomology of G with coeffients in M vanishes in degrees k > n, that is, Hk(G,M) = 0 whenever k > n. The p-cohomological dimension for prime p is similarly defined in terms of the p-torsion groups Hk(G,M){p}.[1]

The smallest n such that the cohomological dimension of G is less than or equal to n is the cohomological dimension of G (with coefficients R), which is denoted n = cdR(G).

A free resolution of Z can be obtained from a free action of the group G on a contractible topological space X. In particular, if X is a contractible CW complex of dimension n with a free action of a discrete group G that permutes the cells, then cdZ(G)  n.

Examples

In the first group of examples, let the ring R of coefficients be Z.

Now let us consider the case of a general ring R.

Cohomological dimension of a field

The p-cohomological dimension of a field K is the p-cohomological dimension of the Galois group of a separable closure of K.[2] The cohomological dimension of K is the supremum of the p-cohomological dimension over all primes p.[3]

Examples

See also

References

  1. Gille & Szamuely (2006) p.136
  2. Shatz (1972) p.94
  3. Gille & Szamuely (2006) p.138
  4. Gille & Szamuely (2006) p.139
  5. 5.0 5.1 Gille & Szamuely (2006) p.140