Cochran's Q test

In statistics, in the analysis of two-way randomized block designs where the response variable can take only two possible outcomes (coded as 0 and 1), Cochran's Q test is a non-parametric statistical test to verify whether k treatments have identical effects.[1][2][3] It is named for William Gemmell Cochran. Cochran's Q test should not be confused with Cochran's C test, which is a variance outlier test.

Background

Cochran's Q test assumes that there are k > 2 experimental treatments and that the observations are arranged in b blocks; that is,

Treatment 1 Treatment 2 \cdots Treatment k
Block 1 X11 X12 \cdots X1k
Block 2 X21 X22 \cdots X2k
Block 3 X31 X32 \cdots X3k
\vdots
\vdots
\vdots
\ddots
\vdots
Block b Xb1 Xb2 \cdots Xbk

Description

Cochran's Q test is

H0: The treatments are equally effective.
Ha: There is a difference in effectiveness among treatments.

The Cochran's Q test statistic is


T = k\left(k-1\right)\frac{\sum\limits_{j=1}^k \left(X_{\bullet j} - \frac{N}{k}\right)^2}{\sum\limits_{i=1}^b X_{i\bullet}\left(k-X_{i\bullet}\right)}

where

k is the number of treatments
X j is the column total for the jth treatment
b is the number of blocks
Xi  is the row total for the ith block
N is the grand total

Critical region

For significance level α, the critical region is


T > \chi^2_{1-\alpha,k-1}

where Χ21 α,k 1 is the (1 α)-quantile of the chi-squared distribution with k 1 degrees of freedom. The null hypothesis is rejected if the test statistic is in the critical region. If the Cochran test rejects the null hypothesis of equally effective treatments, pairwise multiple comparisons can be made by applying Cochran's Q test on the two treatments of interest.

Assumptions

Cochran's Q test is based on the following assumptions:

  1. A large sample approximation; in particular, it assumes that b is "large".
  2. The blocks were randomly selected from the population of all possible blocks.
  3. The outcomes of the treatments can be coded as binary responses (i.e., a "0" or "1") in a way that is common to all treatments within each block.

Related tests

References

  1. William G. Cochran (December 1950). "The Comparison of Percentages in Matched Samples". Biometrika 37 (3/4): 256–266. doi:10.1093/biomet/37.3-4.256. JSTOR http://www.jstor.org/stable/2332378.
  2. Conover, William Jay (1999). Practical Nonparametric Statistics (Third Edition ed.). Wiley, New York, NY USA. pp. 388–395. ISBN 9780471160687.
  3. National Institute of Standards and Technology. Cochran Test

 This article incorporates public domain material from websites or documents of the National Institute of Standards and Technology.