Chiraphos

Chiraphos
Names
Other names
* (2S,3S)-(–)-Bis(diphenylphosphino)butane
  • (2R,3R)-(+)-Bis(diphenylphosphino)butane (for the corresponding enantiomer)
Identifiers
74839-84-2 (R,R-Enantiomer) Yes
64896-28-2 (S, S-Enantiomer) Yes
ChemSpider 8288775 Yes
Jmol-3D images Image
PubChem 10113249
Properties
C28H28P2
Molar mass 426.47 g/mol
Appearance White powder
Melting point 104 to 109 °C (219 to 228 °F; 377 to 382 K)
Hazards
EU classification Irritant (XI)
R-phrases R36/37/38
S-phrases S26 S37/39
Except where noted otherwise, data is given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 Yes verify (what is: Yes/?)
Infobox references

Chiraphos is a chiral diphosphine employed as a ligand in organometallic chemistry. This bidentate ligand chelates metals via the two phosphine groups. Its name is derived from its description being both chiral and a phosphine. Chiraphos is available in two enantiomeric forms, S,S and R,R, each with C2 symmetry.

Preparation

Chiraphos is prepared from S,S or R,R-2,3-butanediol, which are derived from commercially available S,S or R,R-tartaric acid; the technique of using cheaply available enantiopure starting materials is known as chiral pool synthesis. The diol is tosylated and then the ditosylate is treated with lithium diphenylphosphide.[1] The ligand was an important demonstration of how the conformation of the chelate ring can affect asymmetric induction by a metal catalyst. Prior to this work, in most chiral phosphines, e.g., DIPAMP, phosphorus was the stereogenic center.

References

  1. M. D. Fryzuk, B. Bosnich (1977). "Asymmetric synthesis. Production of optically active amino acids by catalytic hydrogenation". J. Am. Chem. Soc. 99 (19): 6262–6267. doi:10.1021/ja00461a014. PMID 893889.