Characteristic subgroup

In mathematics, particularly in the area of abstract algebra known as group theory, a characteristic subgroup is a subgroup that is invariant under all automorphisms of the parent group.[1][2] Because conjugation is an automorphism, every characteristic subgroup is normal, though not every normal subgroup is characteristic. Examples of characteristic subgroups include the commutator subgroup and the center of a group.

Definitions

A characteristic subgroup of a group G is a subgroup H that is invariant under each automorphism of G. That is,

\varphi(H) = H

for every automorphism φ of G (where φ(H) denotes the image of H under φ).

The statement “H is a characteristic subgroup of G” is written

H\mathrel{{}\operatorname{char}{}}G.

Characteristic vs. normal

If G is a group, and g is a fixed element of G, then the conjugation map

x \mapsto g x g^{-1}

is an automorphism of G (known as an inner automorphism). A subgroup of G that is invariant under all inner automorphisms is called normal. Since a characteristic subgroup is invariant under all automorphisms, every characteristic subgroup is normal.

Not every normal subgroup is characteristic. Here are several examples:

Note: If H is the unique subgroup of a group G, then H is characteristic in G.

Comparison to other subgroup properties

Distinguished subgroups

A related concept is that of a distinguished subgroup (also called strictly characteristic subgroup). In this case the subgroup H is invariant under the applications of surjective endomorphisms. For a finite group this is the same, because surjectivity implies injectivity, but not for an infinite group: a surjective endomorphism is not necessarily an automorphism.

Fully invariant subgroups

For an even stronger constraint, a fully characteristic subgroup (also called a fully invariant subgroup) H of a group G is a group remaining invariant under every endomorphism of G; in other words, if f : GG is any homomorphism, then f(H) is a subgroup of H.

Verbal subgroups

An even stronger constraint is verbal subgroup, which is the image of a fully invariant subgroup of a free group under a homomorphism.

Containments

Every subgroup that is fully characteristic is certainly distinguished and therefore characteristic; but a characteristic or even distinguished subgroup need not be fully characteristic.

The center of a group is always a distinguished subgroup, but it is not always fully characteristic. The finite group of order 12, Sym(3) × Z/2Z has a homomorphism taking (π, y) to ( (1,2)y, 0) which takes the center 1 × Z/2Z into a subgroup of Sym(3) × 1, which meets the center only in the identity.

The relationship amongst these subgroup properties can be expressed as:

subgroupnormal subgroupcharacteristic subgroup ⇐ distinguished subgroup ⇐ fully characteristic subgroupverbal subgroup

Examples

Finite example

Consider the group G = S3 × Z2 (the group of order 12 which is the direct product of the symmetric group of order 6 and a cyclic group of order 2). The center of G is its second factor Z2. Note that the first factor S3 contains subgroups isomorphic to Z2, for instance {identity,(12)}; let f: Z2 → S3 be the morphism mapping Z2 onto the indicated subgroup. Then the composition of the projection of G onto its second factor Z2, followed by f, followed by the inclusion of S3 into G as its first factor, provides an endomorphism of G under which the image of the center Z2 is not contained in the center, so here the center is not a fully characteristic subgroup of G.

Cyclic groups

Every subgroup of a cyclic group is characteristic.

Subgroup functors

The derived subgroup (or commutator subgroup) of a group is a verbal subgroup. The torsion subgroup of an abelian group is a fully invariant subgroup.

Topological groups

The identity component of a topological group is always a characteristic subgroup.

Transitivity

The property of being characteristic or fully characteristic is transitive; if H is a (fully) characteristic subgroup of K, and K is a (fully) characteristic subgroup of G, then H is a (fully) characteristic subgroup of G.

Moreover, while it is not true that every normal subgroup of a normal subgroup is normal, it is true that every characteristic subgroup of a normal subgroup is normal. Similarly, while it is not true that every distinguished subgroup of a distinguished subgroup is distinguished, it is true that every fully characteristic subgroup of a distinguished subgroup is distinguished.

Map on Aut and End

If H\,\mathrm{char}\,G., then every automorphism of G induces an automorphism of the quotient group G/H, which yields a map \mbox{Aut}\,G \to \mbox{Aut}\, G/H.

If H is fully characteristic in G, then analogously, every endomorphism of G induces an endomorphism of G/H, which yields a map \mbox{End}\,G \to \mbox{End}\, G/H.

See also

References

  1. Dummit, David S.; Foote, Richard M. (2004). Abstract Algebra (3rd ed.). John Wiley & Sons. ISBN 0-471-43334-9.
  2. Lang, Serge (2002). Algebra. Graduate Texts in Mathematics. Springer. ISBN 0-387-95385-X.