Cellular compartment
Cellular compartments in cell biology comprise all of the closed parts within the cytosol of a eukaryotic cell, usually surrounded by a single or double lipid layer membrane. These compartments are often, but not always, defined as membrane enclosed regions. The formation of cellular compartments is called compartmentalization.
Most organelles are compartments: mitochondria, chloroplasts (in photosynthetic organisms), peroxisomes, lysosomes, the endoplasmic reticulum, the cell nucleus or the Golgi apparatus. Smaller elements like vesicles, and sometimes even microtubules can also be counted as compartments.
It was thought that compartmentalization is not found in prokaryotic cells.,[1] but the discovery of carboxysomes and many other metabolosomes revealed that prokaryotic cells are capable of making compartmentalized organelles.
Types
In general there are 4 main cellular compartments, they are:
- The nuclear compartment comprising the nucleus
- The intercisternal space which comprises the space between the membranes of the endoplasmic reticulum (which is continuous with the nuclear envelope)
- Organelles
- The cytosol
Function
Compartments have three main roles. One is to establish physical boundaries for biological processes that enables the cell to carry out different metabolic activities at the same time. This may include keeping certain biomolecules within a region, or keeping other molecules outside. Within the membrane-bound compartments, different intracellular pH, different enzyme systems, and other differences are isolated. With mitochondria, the cytosol has an oxidizing environment which converts NADH to NAD+. With these cases, the compartmentalization is physical.
Another is to generate a specific micro-environment to spatially or temporally regulate a biological process. As an example, a yeast vacuole is normally acidified by proton transporters on the membrane.
A third role is to establish specific locations or cellular addresses for which processes should occur. For example a transcription factor may be directed to a nucleus, where it can promote transcription of certain genes.
For protein synthesis, all the organs used for it are relatively near one another, the nucleolus makes the ribosomes which synthesize the proteins, the rough endoplasmic reticulum (rough ER) is near the nucleus as well. The Golgi body is also near the rough ER for packaging and redistributing. The functional component to an eukaryotic cell is the organelles.
Establishment
Often, cellular compartments are defined by membrane enclosure. These membranes provide physical barriers to biomolecules. Transport across these barriers is often controlled in order to maintain the concentration of biomolecules within and outside of the compartment.