Casson invariant

In 3-dimensional topology, a part of the mathematical field of geometric topology, the Casson invariant is an integer-valued invariant of oriented integral homology 3-spheres, introduced by Andrew Casson.

Kevin Walker (1992) found an extension to rational homology 3-spheres, called the Casson–Walker invariant, and Christine Lescop (1995) extended the invariant to all closed oriented 3-manifolds.

Definition

A Casson invariant is a surjective map λ from oriented integral homology 3-spheres to Z satisfying the following properties:

\lambda\left(\Sigma+\frac{1}{n+1}\cdot K\right)-\lambda\left(\Sigma+\frac{1}{n}\cdot K\right)
is independent of n. Here \Sigma+\frac{1}{m}\cdot K denotes \frac{1}{m} Dehn surgery on Σ by K.
\lambda\left(\Sigma+\frac{1}{m+1}\cdot K+\frac{1}{n+1}\cdot L\right) -\lambda\left(\Sigma+\frac{1}{m}\cdot K+\frac{1}{n+1}\cdot L\right)-\lambda\left(\Sigma+\frac{1}{m+1}\cdot K+\frac{1}{n}\cdot L\right) +\lambda\left(\Sigma+\frac{1}{m}\cdot K+\frac{1}{n}\cdot L\right)

The Casson invariant is unique (with respect to the above properties) up to an overall multiplicative constant.

Properties

\lambda\left(\Sigma+\frac{1}{n+1}\cdot K\right)-\lambda\left(\Sigma+\frac{1}{n}\cdot K\right)=\pm 1.
\lambda \left ( M + \frac{1}{n+1}\cdot K\right ) - \lambda \left ( M + \frac{1}{n}\cdot K\right ) = \phi_1 (K),
where \phi_1 (K) is the coefficient of z^2 in the Alexander-Conway polynomial \nabla_K(z), and is congruent (mod 2) to the Arf invariant of K.
 \lambda(\Sigma(p,q,r))=-\frac{1}{8}\left[1-\frac{1}{3pqr}\left(1-p^2q^2r^2+p^2q^2+q^2r^2+p^2r^2\right)
-d(p,qr)-d(q,pr)-d(r,pq)\right]
where
d(a,b)=-\frac{1}{a}\sum_{k=1}^{a-1}\cot\left(\frac{\pi k}{a}\right)\cot\left(\frac{\pi bk}{a}\right)

The Casson invariant as a count of representations

Informally speaking, the Casson invariant counts half the number of conjugacy classes of representations of the fundamental group of a homology 3-sphere M into the group SU(2). This can be made precise as follows.

The representation space of a compact oriented 3-manifold M is defined as \mathcal{R}(M)=R^{\mathrm{irr}}(M)/SO(3) where R^{\mathrm{irr}}(M) denotes the space of irreducible SU(2) representations of \pi_1 (M). For a Heegaard splitting \Sigma=M_1 \cup_F M_2 of M, the Casson invariant equals \frac{(-1)^g}{2} times the algebraic intersection of \mathcal{R}(M_1) with \mathcal{R}(M_2).

Generalizations

Rational homology 3-spheres

Kevin Walker found an extension of the Casson invariant to rational homology 3-spheres. A Casson-Walker invariant is a surjective map λCW from oriented rational homology 3-spheres to Q satisfying the following properties:

1. λ(S3) = 0.

2. For every 1-component Dehn surgery presentation (K, μ) of an oriented rational homology sphere M′ in an oriented rational homology sphere M:

\lambda_{CW}(M^\prime)=\lambda_{CW}(M)+\frac{\langle m,\mu\rangle}{\langle m,\nu\rangle\langle \mu,\nu\rangle}\Delta_{W}^{\prime\prime}(M-K)(1)+\tau_{W}(m,\mu;\nu)

where:

where x, y are generators of H1(∂N(K), Z) such that \langle x,y\rangle=1, v = δy for an integer δ and s(p, q) is the Dedekind sum.

Note that for integer homology spheres, the Walker's normalization is twice that of Casson's:  \lambda_{CW}(M) = 2 \lambda(M) .

Compact oriented 3-manifolds

Christine Lescop defined an extension λCWL of the Casson-Walker invariant to oriented compact 3-manifolds. It is uniquely characterized by the following properties:

\lambda_{CWL}(M)=\tfrac{1}{2}\left\vert H_1(M)\right\vert\lambda_{CW}(M).
\lambda_{CWL}(M)=\frac{\Delta^{\prime\prime}_M(1)}{2}-\frac{\mathrm{torsion}(H_1(M,\mathbb{Z}))}{12}
where Δ is the Alexander polynomial normalized to be symmetric and take a positive value at 1.
\lambda_{CWL}(M)=\left\vert\mathrm{torsion}(H_1(M))\right\vert\mathrm{Link}_M (\gamma,\gamma^\prime)
where γ is the oriented curve given by the intersection of two generators S_1,S_2 of H_2(M;\mathbb{Z}) and \gamma^\prime is the parallel curve to γ induced by the trivialization of the tubular neighbourhood of γ determined by S_1, S_2.
\lambda_{CWL}(M)=\left\vert\mathrm{torsion}(H_1(M;\mathbb{Z}))\right\vert\left((a\cup b\cup c)([M])\right)^2.

The Casson–Walker–Lescop invariant has the following properties:

\lambda_{CWL}(M_1\#M_2)=\left\vert H_1(M_2)\right\vert\lambda_{CWL}(M_1)+\left\vert H_1(M_1)\right\vert\lambda_{CWL}(M_2)

SU(N)

In 1990, C. Taubes showed that the SU(2) Casson invarinat of a 3-homology shpere M has gauge theoretic interpretation as the Euler characteristic of \mathcal{A}/\mathcal{G}, where \mathcal{A} is the space of SU(2) connections on M and \mathcal{G} is the group of gauge transformations. He lead Chern–Simons invariant as a S^1-valued Morse function on \mathcal{A}/\mathcal{G} and pointed out that the SU(3) Casson invariant is important to make the invariants independent on perturbations. (Taubes (1990))

Boden and Herald (1998) defined an SU(3) Casson invariant.

References