Carlyle circle
In mathematics, a Carlyle circle is a certain circle in a coordinate plane associated with a quadratic equation. The circle has the property that the solutions of the quadratic equation are the horizontal coordinates of the intersections of the circle with the horizontal axis.[1] The idea of using such a circle to solve a quadratic equation is attributed to Thomas Carlyle (1795–1881).[2] Carlyle circles have been used to develop ruler-and-compass constructions of regular polygons.
Definition
Given the quadratic equation
- x2 − sx + p = 0
the circle in the coordinate plane having the line segment joining the points A(0, 1) and B(s, p) as a diameter is called the Carlyle circle of the quadratic equation.
Defining property
The defining property of the Carlyle circle can be established thus: the equation of the circle having the line segment AB as diameter is
- x(x − s) + (y − 1)(y − p) = 0.
The abscissas of the points where the circle intersects the x-axis are the roots of the equation (obtained by setting y = 0 in the equation of the circle)
- x2 − sx + p = 0.
Construction of regular polygons
Regular pentagon
The problem of constructing a regular pentagon is equivalent to the problem of constructing the roots of the equation
- z5 − 1 = 0.
One root of this equation is z0 = 1 which corresponds to the point P0(1, 0). Removing the factor corresponding to this root, the other roots turn out to be roots of the equation
- z4 + z3 + z2 + z + 1 = 0.
These roots can be represented in the form ω, ω2, ω3, ω4 where ω = exp(2πi/5). Let these correspond to the points P1, P2, P3, P4. Letting
- p1 = ω + ω4, p2 = ω2 + ω3
we have
- p1 + p2 = −1, p1p2 = −1. (These can be quickly shown to be true by direct substitution into the quartic above and noting that ω6 = ω, and ω7 = ω2.)
So p1 and p2 are the roots of the quadratic equation
- x2 + x − 1 = 0.
The Carlyle circle associated with this quadratic has a diameter with endpoints at (0, 1) and (-1, -1) and center at (-1/2, 0). Carlyle circles are used to construct p1 and p2. From the definitions of p1 and p2 it also follows that
- p1 = 2 cos (2π/5), p2 = 2 cos (4π/5).
These are then used to construct the points P1, P2, P3, P4.
This detailed procedure involving Carlyle circles for the construction of regular pentagons is given below.[2]
- Draw a circle in which to inscribe the pentagon and mark the center point O.
- Draw a horizontal line through the center of the circle. Mark one intersection with the circle as point B.
- Construct a vertical line through the center. Mark one intersection with the circle as point A.
- Construct the point M as the midpoint of O and B.
- Draw a circle centered at M through the point A. Mark its intersection with the horizontal line (inside the original circle) as the point W and its intersection outside the circle as the point V.
- Draw a circle of radius OA and center W. It intersects the original circle at two of the vertices of the pentagon.
- Draw a circle of radius OA and center V. It intersects the original circle at two of the vertices of the pentagon.
- The fifth vertex is the intersection of the horizontal axis with the original circle.
Regular heptadecagon
There is a similar method involving Carlyle circles to construct regular heptadecagons.[2] The attached figure illustrates the procedure.
Regular 257-gon
To construct a regular 257-gon using Carlyle circles, as many as 24 Carlyle circles are to be constructed. One of these is the circle to solve the quadratic equation x2 + x − 64 = 0.[2]
Regular 65537-gon
There is a procedure involving Carlyle circles for the construction of a regular 65537-gon. However there are practical problems for the implementation of the procedure, as, for example, it requires the construction of the Carlyle circle for the solution of the quadratic equation x2 + x − 214 = 0.[2]
References
- ↑ Weisstein, Eric W. "Carlyle Circle". From MathWorld—A Wolfram Web Resource. Retrieved 21 May 2013.
- ↑ 2.0 2.1 2.2 2.3 2.4 DeTemple, Duane W. (Feb 1991). "Carlyle circles and Lemoine simplicity of polygon constructions". The American Mathematical Monthly 98 (2): 97–208. doi:10.2307/2323939. Retrieved 6 November 2011.
|