Cantic order-4 hexagonal tiling

Tritetratetragonal tiling

Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex figure3.8.4.8
Schläfli symbolt0,1{(4,4,3)}
Wythoff symbol4 4 | 3
Coxeter diagram
Symmetry group[(4,4,3)], (*443)
DualOrder-4-4-3 t01 dual tiling
PropertiesVertex-transitive

In geometry, the tritetratrigonal tiling or cantic order-4 hexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{(4,4,3)} or h2{6,4}.

Related polyhedra and tiling

Uniform (4,4,3) tilings
Symmetry: [(4,4,3)] (*443) [(4,4,3)]+
(443)
[(4,4,3+)]
(3*22)
[(4,1+,4,3)]
(*3232)
h{6,4}
t0{(4,4,3)}
{(4,4,3)}
h2{6,4}
t0,1{(4,4,3)}
r{(3,4,4)}
{4,6}
t1{(4,4,3)}
{(4,3,4)}
h2{6,4}
t1,2{(4,4,3)}
r{(4,4,3)}
h{6,4}
t2{(4,4,3)}
{(3,4,4)}
r{6,4}
t0,2{(4,4,3)}
r{(4,3,4)}
t{4,6}
t0,1,2{(4,4,3)}
t{(4,3,4)}
s{4,6}
 
s{(4,4,3)}
hr{6,4}
 
hr{(4,3,4)}
h{4,6}
 
h{(4,3,4)}
q{4,6}
 
h2{(4,3,4)}
Uniform duals
V(3.4)4 V3.8.4.8 V(4.4)3 V3.8.4.8 V(3.4)4 V4.6.4.6 V6.8.8 V3.3.3.4.3.4 V(4.4.3)2 V66 V4.3.4.6.6

References

See also

Wikimedia Commons has media related to Uniform tiling 3-8-4-8.

External links