Cantic octagonal tiling
Tritetratrigonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex figure | 3.6.4.6 |
Schläfli symbol | h2{8,3} |
Wythoff symbol | 4 3 | 3 |
Coxeter diagram | = |
Symmetry group | [(4,3,3)], (*433) |
Dual | Order-4-3-3 t12 dual tiling |
Properties | Vertex-transitive |
In geometry, the tritetratrigonal tiling or shieldotritetragonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t1,2(4,3,3). It can also be named as a cantic octagonal tiling, h2{8,3}.
Dual tiling
Related polyhedra and tiling
Symmetry: [(4,3,3)], (*433) | [(4,3,3)]+, (433) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
h{8,3} t0{(4,3,3)} {(4,3,3)} |
r{8,3} t0,1{(4,3,3)} r{(3,4,3)} |
h{8,3} t1{(4,3,3)} {(3,3,4)} |
h2{8,3} t1,2{(4,3,3)} r{(4,3,3)} |
{3,8} t2{(4,3,3)} {(3,4,3)} |
h2{8,3} t0,2{(4,3,3)} r{(3,3,4)} |
t{3,8} t0,1,2{(4,3,3)} t{(3,4,3)} |
s{3,8} s{(3,4,3)} | |||
Uniform duals | ||||||||||
V(3.4)3 | V3.8.3.8 | V(3.4)3 | V3.6.4.6 | V(3.3)4 | V3.6.4.6 | V6.6.8 | V3.3.3.3.3.4 |
Symmetry *n32 [1+,2n,3] = [(n,3,3)] |
Spherical | Planar | Compact Hyperbolic | Paracompact | ||
---|---|---|---|---|---|---|
*332 [1+,4,3] Td |
*333 [1+,6,3] P3m1 |
*433 [1+,8,3] = [(4,3,3)] |
*533 [1+,10,3] = [(5,3,3)] |
*633 [1+,12,3]... = [(6,3,3)] |
*∞33 [1+,∞,3] = [(∞,3,3)] | |
Cantic figure |
3.6.2.6 |
3.6.3.6 |
3.6.4.6 |
3.6.5.6 |
3.6.6.6 |
3.6.∞.6 |
Coxeter Schläfli |
= h2{4,3} |
= h2{6,3} |
= h2{8,3} |
= h2{10,3} |
= h2{12,3} |
= h2{∞,3} |
Dual figure | V3.6.2.6 |
V3.6.3.6 |
V3.6.4.6 |
V3.6.5.6 |
V3.6.6.6 |
V3.6.∞.6 |
Coxeter |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
Wikimedia Commons has media related to Uniform tiling 3-6-4-6. |
- Square tiling
- Uniform tilings in hyperbolic plane
- List of regular polytopes
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
- Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
|