Cantellated 5-cell


5-cell

Cantellated 5-cell

Cantitruncated 5-cell
Orthogonal projections in A4 Coxeter plane

In four-dimensional geometry, a cantellated 5-cell is a convex uniform 4-polytope, being a cantellation (a 2nd order truncation) of the regular 5-cell.

There are 2 unique degrees of runcinations of the 5-cell including with permutations truncations.


Cantellated 5-cell

Cantellated 5-cell

Schlegel diagram with
octahedral cells shown
Type Uniform 4-polytope
Schläfli symbol t0,2{3,3,3}
Coxeter diagram
Cells 20 5 (3.4.3.4)
5 (3.3.3.3)
10 (3.4.4)
Faces 80 50{3}
30{4}
Edges 90
Vertices 30
Vertex figure
Irreg. triangular prism
Symmetry group A4, [3,3,3], order 120
Properties convex, isogonal
Uniform index 3 4 5

The cantellated 5-cell or small rhombated pentachroron is a uniform 4-polytope. It has 30 vertices, 90 edges, 80 faces, and 20 cells. The cells are 5 cuboctahedra, 5 octahedra, and 10 triangular prisms. Each vertex is surrounded by 2 cuboctahedra, 2 triangular prisms, and 1 octahedron; the vertex figure is a nonuniform triangular prism.

Alternate names

Images

orthographic projections
Ak
Coxeter plane
A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Wireframe

Ten triangular prisms colored green

Five octahedra colored blue

Coordinates

The Cartesian coordinates of the vertices of the origin-centered cantellated 5-cell having edge length 2 are:

\left(2\sqrt{\frac{2}{5}},\  2\sqrt{\frac{2}{3}},\ \frac{1}{\sqrt{3}},\  \pm1\right)
\left(2\sqrt{\frac{2}{5}},\  2\sqrt{\frac{2}{3}},\ \frac{-2}{\sqrt{3}},\ 0\right)
\left(2\sqrt{\frac{2}{5}},\  0,\                   \pm\sqrt{3},\         \pm1\right)
\left(2\sqrt{\frac{2}{5}},\  0,\                   0,\                   \pm2\right)
\left(2\sqrt{\frac{2}{5}},\ -2\sqrt{\frac{2}{3}},\ \frac{2}{\sqrt{3}},\  0\right)
\left(2\sqrt{\frac{2}{5}},\ -2\sqrt{\frac{2}{3}},\ \frac{-1}{\sqrt{3}},\ \pm1\right)
\left(\frac{-1}{\sqrt{10}},\ \sqrt{\frac{3}{2}},\  \pm\sqrt{3},\         \pm1\right)
\left(\frac{-1}{\sqrt{10}},\ \sqrt{\frac{3}{2}},\  0,\                   \pm2\right)
\left(\frac{-1}{\sqrt{10}},\ \frac{-1}{\sqrt{6}},\ \frac{2}{\sqrt{3}},\  \pm2\right)
\left(\frac{-1}{\sqrt{10}},\ \frac{-1}{\sqrt{6}},\ \frac{-4}{\sqrt{3}},\ 0\right)
\left(\frac{-1}{\sqrt{10}},\ \frac{-5}{\sqrt{6}},\ \frac{1}{\sqrt{3}},\  \pm1\right)
\left(\frac{-1}{\sqrt{10}},\ \frac{-5}{\sqrt{6}},\ \frac{-2}{\sqrt{3}},\ 0\right)
\left(-3\sqrt{\frac{2}{5}},\ 0,\ 0,\ 0\right) \pm \left(0,\ \sqrt{\frac{2}{3}},\  \frac{2}{\sqrt{3}},\  0\right)
\left(-3\sqrt{\frac{2}{5}},\ 0,\ 0,\ 0\right) \pm \left(0,\ \sqrt{\frac{2}{3}},\ \frac{-1}{\sqrt{3}},\ \pm1\right)

The vertices of the cantellated 5-cell can be most simply positioned in 5-space as permutations of:

(0,0,1,1,2)

This construction is from the positive orthant facet of the cantellated 5-orthoplex.

Cantitruncated 5-cell

Cantitruncated 5-cell

Schlegel diagram with Truncated tetrahedral cells shown
Type Uniform 4-polytope
Schläfli symbol t0,1,2{3,3,3}
Coxeter diagram
Cells 20 5 (4.6.6)
10 (3.4.4)
 5 (3.6.6)
Faces 80 20{3}
30{4}
30{6}
Edges 120
Vertices 60
Vertex figure
sphenoid
Symmetry group A4, [3,3,3], order 120
Properties convex, isogonal
Uniform index 6 7 8

The cantitruncated 5-cell or great rhombated pentachoron is a uniform 4-polytope. It is composed of 60 vertices, 120 edges, 80 faces, and 20 cells. The cells are: 5 truncated octahedra, 10 triangular prisms, and 5 truncated tetrahedra. Each vertex is surrounded by 2 truncated octahedra, one triangular prism, and one truncated tetrahedron.

Alternative names

Images

orthographic projections
Ak
Coxeter plane
A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Stereographic projection with its 10 triangular prisms.

Cartesian coordinates

The Cartesian coordinates of an origin-centered cantitruncated 5-cell having edge length 2 are:

\left(3\sqrt{\frac{2}{5}},\  \pm\sqrt{6},\          \pm\sqrt{3},\         \pm1\right)
\left(3\sqrt{\frac{2}{5}},\  \pm\sqrt{6},\          0,\                   \pm2\right)
\left(3\sqrt{\frac{2}{5}},\ 0,\ 0,\ 0\right) \pm \left(0,\ \sqrt{\frac{2}{3}},\ \frac{5}{\sqrt{3}},\  \pm1\right)
\left(3\sqrt{\frac{2}{5}},\ 0,\ 0,\ 0\right) \pm \left(0,\ \sqrt{\frac{2}{3}},\ \frac{-1}{\sqrt{3}},\ \pm3\right)
\left(3\sqrt{\frac{2}{5}},\ 0,\ 0,\ 0\right) \pm \left(0,\ \sqrt{\frac{2}{3}},\ \frac{-4}{\sqrt{3}},\ \pm2\right)
\left(\frac{1}{\sqrt{10}},\  \frac{5}{\sqrt{6}},\   \frac{5}{\sqrt{3}},\  \pm1\right)
\left(\frac{1}{\sqrt{10}},\  \frac{5}{\sqrt{6}},\   \frac{-1}{\sqrt{3}},\ \pm3\right)
\left(\frac{1}{\sqrt{10}},\  \frac{5}{\sqrt{6}},\   \frac{-4}{\sqrt{3}},\ \pm2\right)
\left(\frac{1}{\sqrt{10}},\  -\sqrt{\frac{3}{2}},\  \sqrt{3},\            \pm3\right)
\left(\frac{1}{\sqrt{10}},\  -\sqrt{\frac{3}{2}},\  -2\sqrt{3},\          0\right)
\left(\frac{1}{\sqrt{10}},\  \frac{-7}{\sqrt{6}},\  \frac{2}{\sqrt{3}},\  \pm2\right)
\left(\frac{1}{\sqrt{10}},\  \frac{-7}{\sqrt{6}},\  \frac{-4}{\sqrt{3}},\ 0\right)
\left(-2\sqrt{\frac{2}{5}},\ 2\sqrt{\frac{2}{3}},\  \frac{4}{\sqrt{3}},\  \pm2\right)
\left(-2\sqrt{\frac{2}{5}},\ 2\sqrt{\frac{2}{3}},\  \frac{1}{\sqrt{3}},\  \pm3\right)
\left(-2\sqrt{\frac{2}{5}},\ 2\sqrt{\frac{2}{3}},\  \frac{-5}{\sqrt{3}},\ \pm1\right)
\left(-2\sqrt{\frac{2}{5}},\ 0,\                    \sqrt{3},\            \pm3\right)
\left(-2\sqrt{\frac{2}{5}},\ 0,\                    -2\sqrt{3},\          0\right)
\left(-2\sqrt{\frac{2}{5}},\ -4\sqrt{\frac{2}{3}},\ \frac{1}{\sqrt{3}},\  \pm1\right)
\left(-2\sqrt{\frac{2}{5}},\ -4\sqrt{\frac{2}{3}},\ \frac{-2}{\sqrt{3}},\ 0\right)
\left(\frac{-9}{\sqrt{10}},\ \sqrt{\frac{3}{2}},\   \pm\sqrt{3},\         \pm1\right)
\left(\frac{-9}{\sqrt{10}},\ \sqrt{\frac{3}{2}},\   0,\                   \pm2\right)
\left(\frac{-9}{\sqrt{10}},\ \frac{-1}{\sqrt{6}},\  \frac{2}{\sqrt{3}},\  \pm2\right)
\left(\frac{-9}{\sqrt{10}},\ \frac{-1}{\sqrt{6}},\  \frac{-4}{\sqrt{3}},\ 0\right)
\left(\frac{-9}{\sqrt{10}},\ \frac{-5}{\sqrt{6}},\  \frac{1}{\sqrt{3}},\  \pm1\right)
\left(\frac{-9}{\sqrt{10}},\ \frac{-5}{\sqrt{6}},\  \frac{-2}{\sqrt{3}},\ 0\right)

These vertices can be more simply constructed on a hyperplane in 5-space, as the permutations of:

(0,0,1,2,3)

This construction is from the positive orthant facet of the cantitruncated 5-orthoplex.

Related 4-polytopes

These polytopes are art of a set of 9 Uniform 4-polytopes constructed from the [3,3,3] Coxeter group.

Name 5-cell truncated 5-cell rectified 5-cell cantellated 5-cell bitruncated 5-cell cantitruncated 5-cell runcinated 5-cell runcitruncated 5-cell omnitruncated 5-cell
Schläfli
symbol
{3,3,3}
3r{3,3,3}
t{3,3,3}
2t{3,3,3}
r{3,3,3}
2r{3,3,3}
rr{3,3,3}
r2r{3,3,3}
2t{3,3,3} tr{3,3,3}
t2r{3,3,3}
t0,3{3,3,3} t0,1,3{3,3,3}
t0,2,3{3,3,3}
t0,1,2,3{3,3,3}
Coxeter
diagram






Schlegel
diagram
A4
Coxeter plane
Graph
A3 Coxeter plane
Graph
A2 Coxeter plane
Graph

References