Bitruncated 16-cell honeycomb

Bitruncated 16-cell honeycomb
(No image)
TypeUniform honeycomb
Schläfli symbolt1,2{3,3,4,3}
h2,3{4,3,3,4}
2t{3,31,1,1}
Coxeter-Dynkin diagram
=
4-face typeTruncated 24-cell
Bitruncated tesseract
Cell typeCube
Truncated octahedron
Truncated tetrahedron
Face type{3}, {4}, {6}
Vertex figuretriangular duopyramid
Coxeter group{\tilde{F}}_4 = [3,3,4,3]
{\tilde{B}}_4 = [4,3,31,1]
{\tilde{D}}_4 = [31,1,1,1]
Dual?
Propertiesvertex-transitive

In four-dimensional Euclidean geometry, the bitruncated 16-cell honeycomb (or runcicantic tesseractic honeycomb) is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.

Symmetry constructions

There are 3 different symmetry constructions, all with 3-3 duopyramid vertex figures. The {\tilde{B}}_4 symmetry doubles on {\tilde{D}}_4 in three possible ways, while {\tilde{F}}_4 contains the highest symmetry.

Affine Coxeter group {\tilde{F}}_4
[3,3,4,3]
{\tilde{B}}_4
[4,3,31,1]
{\tilde{D}}_4
[31,1,1,1]
Coxeter diagram
4-faces



Related honeycombs

The [3,4,3,3], , Coxeter group generates 31 permutations of uniform tessellations, 28 are unique in this family and ten are shared in the [4,3,3,4] and [4,3,31,1] families. The alternation (13) is also repeated in other families.

Extended
symmetry
Extended
diagram
Order Honeycombs
[3,3,4,3]×1

1, 3, 5, 6, 8,
9, 10, 11, 12

[3,4,3,3]×1

2, 4, 7, 13,
14, 15, 16, 17,
18, 19, 20, 21,
22 23, 24, 25,
26, 27, 28, 29

[(3,3)[3,3,4,3*]]
=[(3,3)[31,1,1,1]]
=[3,4,3,3]

=
=
×4

(2), (4), (7), (13)

The [4,3,31,1], , Coxeter group generates 31 permutations of uniform tessellations, 23 with distinct symmetry and 4 with distinct geometry. There are two alternated forms: the alternations (19) and (24) have the same geometry as the 16-cell honeycomb and snub 24-cell honeycomb respectively.

Extended
symmetry
Extended
diagram
Order Honeycombs
[4,3,31,1]: ×1

5, 6, 7, 8

<[4,3,31,1]>:
=[4,3,3,4]

=
×2

9, 10, 11, 12, 13, 14,

(10), 15, 16, (13), 17, 18, 19

[3[1+,4,3,31,1]]
= [3[3,31,1,1]]
= [3,3,4,3]

=
=
×3

1, 2, 3, 4

[(3,3)[1+,4,3,31,1]]
= [(3,3)[31,1,1,1]]
= [3,4,3,3]

=
=
×12

20, 21, 22, 23

This honeycomb is one of ten uniform honeycombs constructed by the {\tilde{D}}_4 Coxeter group, all repeated in other families by extended symmetry, seen in the graph symmetry of rings in the Coxeter–Dynkin diagrams. The 10th is constructed as an alternation. As subgroups in Coxeter notation: [3,4,(3,3)*] (index 24), [3,3,4,3*] (index 6), [1+,4,3,3,4,1+] (index 4), [31,1,3,4,1+] (index 2) are all isomorphic to [31,1,1,1]. The ten permutations are listed with its highest extended symmetry relation:

Extended
symmetry
Extended
diagram
Order Honeycombs
[31,1,1,1] ×1 (none)
<[31,1,1,1]>
= [31,1,3,4]

=
×2 (none)
<<[1,131,1]>>
= [4,3,3,4]

=
×4 1, 2
[3[3,31,1,1]]
= [3,4,3,3]

=
×6 3, 4, 5, 6
[<<[1,131,1]>>]
= [[4,3,3,4]]

=
×8 7, 8, 9, 10
[(3,3)[31,1,1,1]]
= [3,3,4,3]

=
×24

See also

Regular and uniform honeycombs in 4-space:

Notes

    References