Birectified 16-cell honeycomb

Birectified 16-cell honeycomb
(No image)
TypeUniform honeycomb
Schläfli symbolt2{3,3,4,3}
Coxeter-Dynkin diagram
=
4-face typeRectified tesseract
Rectified 24-cell
Cell typeCube
Cuboctahedron
Tetrahedron
Face type{3}, {4}
Vertex figure
{3}×{3} duoprism
Coxeter group{\tilde{F}}_4 = [3,3,4,3]
{\tilde{B}}_4 = [4,3,31,1]
{\tilde{D}}_4 = [31,1,1,1]
Dual?
Propertiesvertex-transitive

In four-dimensional Euclidean geometry, the birectified 16-cell honeycomb (or runcic tesseractic honeycomb) is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.

Symmetry constructions

There are 3 different symmetry constructions, all with 3-3 duoprism vertex figures. The {\tilde{B}}_4 symmetry doubles on {\tilde{D}}_4 in three possible ways, while {\tilde{F}}_4 contains the highest symmetry.

Affine Coxeter group {\tilde{F}}_4
[3,3,4,3]
{\tilde{B}}_4
[4,3,31,1]
{\tilde{D}}_4
[31,1,1,1]
Coxeter diagram
Vertex figure
Vertex figure
symmetry
[3,2,3]
(order 36)
[3,2]
(order 12)
[3]
(order 6)
4-faces



Cells






Related honeycombs

The [3,4,3,3], , Coxeter group generates 31 permutations of uniform tessellations, 28 are unique in this family and ten are shared in the [4,3,3,4] and [4,3,31,1] families. The alternation (13) is also repeated in other families.

Extended
symmetry
Extended
diagram
Order Honeycombs
[3,3,4,3]×1

1, 3, 5, 6, 8,
9, 10, 11, 12

[3,4,3,3]×1

2, 4, 7, 13,
14, 15, 16, 17,
18, 19, 20, 21,
22 23, 24, 25,
26, 27, 28, 29

[(3,3)[3,3,4,3*]]
=[(3,3)[31,1,1,1]]
=[3,4,3,3]

=
=
×4

(2), (4), (7), (13)

The [4,3,31,1], , Coxeter group generates 31 permutations of uniform tessellations, 23 with distinct symmetry and 4 with distinct geometry. There are two alternated forms: the alternations (19) and (24) have the same geometry as the 16-cell honeycomb and snub 24-cell honeycomb respectively.

Extended
symmetry
Extended
diagram
Order Honeycombs
[4,3,31,1]: ×1

5, 6, 7, 8

<[4,3,31,1]>:
=[4,3,3,4]

=
×2

9, 10, 11, 12, 13, 14,

(10), 15, 16, (13), 17, 18, 19

[3[1+,4,3,31,1]]
= [3[3,31,1,1]]
= [3,3,4,3]

=
=
×3

1, 2, 3, 4

[(3,3)[1+,4,3,31,1]]
= [(3,3)[31,1,1,1]]
= [3,4,3,3]

=
=
×12

20, 21, 22, 23

This honeycomb is one of ten uniform honeycombs constructed by the {\tilde{D}}_4 Coxeter group, all repeated in other families by extended symmetry, seen in the graph symmetry of rings in the Coxeter–Dynkin diagrams. The 10th is constructed as an alternation. As subgroups in Coxeter notation: [3,4,(3,3)*] (index 24), [3,3,4,3*] (index 6), [1+,4,3,3,4,1+] (index 4), [31,1,3,4,1+] (index 2) are all isomorphic to [31,1,1,1]. The ten permutations are listed with its highest extended symmetry relation:

Extended
symmetry
Extended
diagram
Order Honeycombs
[31,1,1,1] ×1 (none)
<[31,1,1,1]>
= [31,1,3,4]

=
×2 (none)
<<[1,131,1]>>
= [4,3,3,4]

=
×4 1, 2
[3[3,31,1,1]]
= [3,4,3,3]

=
×6 3, 4, 5, 6
[<<[1,131,1]>>]
= [[4,3,3,4]]

=
×8 7, 8, 9, 10
[(3,3)[31,1,1,1]]
= [3,3,4,3]

=
×24

See also

Regular and uniform honeycombs in 4-space:

Notes

    References