Binary compounds of hydrogen

Binary compounds of hydrogen are binary chemical compounds containing just hydrogen and one other chemical element. By convention all binary hydrogen compounds are called hydrides even when the hydrogen atom in it is not an anion.[1][2][3][4] The hydrides can be grouped into several clusters.

Binary hydrogen compounds in group 1 and group 2 are the ionic hydrides (also saline hydrides) with the exception of beryllium hydride which has intermediate properties between ionic and covalent. Beryllium hydride is electron-deficient and polymeric with bridging hydrogen atoms. Group 1 and 2 hydrides are high melting solids that react violently with water.

Elements in group 3, group 4, chromium in group 5, the Lanthanoids and the Actinoids form metallic hydrides, characterised by their metallic luster and hardness, their ability to conduct electricity and their magnetic properties. They are also less dense that the metal itself. Metallic hydrides form by absorption of hydrogen by the respective metal, sometimes requiring elevated pressures, and other times occurring spontaneously. They can be thought of as a solid solution with atomic hydrogen as an interstitial element or as an interstitial hydride. Many metallic hydrides are non-stoichiometric. Examples are TiH1.7, NbHx (0 > x < 1), LaH2.87 and YbH2.55. Exceptions are stoichiometric compounds of uranium (trivalent) UH3, europium (divalent) EuH2 and americium AmH2.

The affinity for hydrogen for the other d-block elements is low. Therefore elements in this block do not form hydrides (the hydride gap) under standard temperature and pressure with the notable exception of palladium.[5] Palladium can absorb up to 900 times its own volume of hydrogen and is therefore actively researched in the field hydrogen storage. In other oxidation states d-block elements again form a wide range of transition metal hydrides for example the rhenium ion in potassium nonahydridorhenate.

Elements in group 13 to 17 (p-block) form covalent hydrides (or nonmetal hydrides). In group 12 zinc hydride is a common chemical reagent but cadmium hydride and mercury hydride are very unstable and esoteric. In group 13 boron hydrides exist as a highly reactive monomer BH3, as an adduct for example ammonia borane or as dimeric diborane and as a whole group of BH cluster compounds. Alane (AlH3) is a polymer. Gallium exists as the dimer digallane. Indium hydride is only stable below −90 °C (−130 °F).

In group 14 the total number of possible binary saturated compounds with carbon of the type CnH2n+2 is very large. Going down the group the number of binary silicon compounds (silanes) is small (straight or branched but rarely cyclic) for example disilane and trisilane. For germanium only 5 linear chain binary compounds are known as gases or volatile liquids. Examples are n-pentagermane, isopentagermane and neopentagermane. Of tin only the distannane is known. Plumbane is an unstable gas.

Non-classical hydrides are those in which extra hydrogen molecules are coordinated as a ligand on the central atoms. These are very unstable but some have been shown to exist.

The periodic table of the stable binary hydrides

The relative stability of binary hydrogen compounds and alloys at standard temperature and pressure can be inferred from their standard enthalpy of formation values.[6]

H2 0 He
LiH -91 BeH2 125 BH3 91 CH4 -74.8 NH3 -46.8 H2O -243 HF -272 Ne
NaH -57 MgH2 -75 AlH3 SiH4 -31 PH3 5.4 H2S -207 HCl -93 Ar
KH -58 CaH2 -174 ScH3 TiH1.7 VH CrH Mn Fe Co Ni CuH ZnH2 GaH3 GeH4 92 AsH3 67 H2Se 30 HBr -36.5 Kr
RbH -47 SrH2 -177 YH3 ZrH2 NbHx Mo Tc Ru Rh PdH Ag CdH2 InH3 SnH4 163 SbH3 146 H2Te 100 HI 26.6 Xe
CsH -50 BaH2 -172 HfH2 TaH W Rh Os Ir Pt Au HgH Tl PbH4 252 BiH3 277 H2Po At Rn
Fr Ra Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Uuq Uup Uuh Uus Uuo
LaH2 CeH2 PrH2 NdH2 PmH2 SmH2 EuH2 GdH2 TbH2 DyH2 HoH2 ErH2 TmH2 YbH2 LuH2
Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
Binary compounds of hydrogen
Covalent hydrides metallic hydrides.
Ionic hydrides Intermediate hydrides.
Do not exist Not assessed

Molecular hydrides

Most monomeric hydrides are isolable only under extreme conditions (i.e. at cryogenic temperatures, and often embedded in a rare gas matrix). This is generally attributable to poor contribution of the atomic orbitals of the respective atoms with the s-orbital of hydrogen; and to the low activation enthalpies of autopolymerisation reactions, which electron-deficient monomers are prone to undergo. The table below shows the monomeric hydride for each element, which is closest to, but not surpassing its heuristic valence. A heuristic valence is the valence of an element that strictly obeys the octet, duodectet, and other valence rules. Where available, both the enthalpy of formation for each monomer and the enthalpy of formation for the hydride in its standard state is shown (in brackets) to give a rough indication of which monomers tend to undergo aggregation to lower enthalpic states. For example, monomeric lithium hydride has an enthalpy of formation of 139 kJ mol−1, whereas solid lithium hydride has an enthalpy of −91 kJ mol−1. This means that it is energetically favourable for a mole of monomeric LiH to aggregate into the ionic solid, losing 230 kJ as a consequence. Aggregation can occur as a chemical association, such as polymerisation, or it can occur as an electrostatic association, such as the formation of hydrogen-bonding in water.

Classical hydrides

Classical hydrides
1 2 3 4 5 6 5 4 3 2 1 2 3 4 3 2 1
H
2
0
LiH[7] 139
(−91)
BeH
2
[8] 123
BH
3
[9] 107
(41)
CH
4
−75
NH
3
−46
H
2
O
−242
(−286)
HF −273
NaH[10] 140
(−56)
MgH
2
142
(−76)
AlH
3
[11] 123
(−46)
SiH
4
34
PH
3
5
H
2
S
−21
HCl −92
KH 132
(−58)
CaH
2
192
(−174)
ScH
3
TiH
4
VH
2
CrH
2
[12]
MnH
2
[13]
FeH
2
[14] 324
CoH
2
[15]
NiH
2
[16]
CuH[17] 278
(28)
ZnH
2
[18] 162
GaH
3
[19] 151
GeH
4
92
AsH
3
67
H
2
Se
30
HBr −36
RbH 132
(−47)
SrH
2
201
(−177)
YH
3
ZrH
4
NbH
4
MoH
6
[20]
Tc RuH
2
[14]
RhH
2
[21]
PdH[22] 361 AgH[17] 288 CdH
2
[18] 183
InH
3
[23] 222
SnH
4
163
SbH
3
146
H
2
Te
100
HI 27
CsH 119
(−50)
BaH
2
213
(−177)
HfH
4
TaH
4
[24]
WH
6
[25] 586
ReH
4
[13]
Os Ir PtH
2
[26]
AuH[17] 295 HgH
2
[27] 101
TlH
3
[28] 293
PbH
4
252
BiH
3
247
H
2
Po
167
HAt 88
Fr Ra Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus
3 4 5 6 7 8 7 6 5 4 3 2 1 2 3
LaH
3
CeH
4
PrH
3
NdH
4
Pm SmH
4
EuH
2
[29]
GdH
3
TbH
3
DyH
4
HoH
3
ErH
2
TmH YbH
2
LuH
3
Ac ThH
4
[30]
Pa UH
4
[31]
Np Pu Am Cm Bk Cf Es Fm Md No Lr
Legend
Monomeric covalent hydride Oligomeric covalent hydride
Polymeric covalent hydride Ionic hydride
Unknown solid structure Not assessed

This table includes the thermally unstable dihydrogen complexes for the sake of completeness. As with the above table, only the complexes with the most complete valence is shown, to the negligence of the most stable complex.

Non-classical covalent hydrides

Non-classical covalent hydrides
8 18 8
LiH(H
2
)
2
[7]
Be BH
3
(H
2
)
Na MgH
2
(H
2
)
n
[32]
AlH
3
(H
2
)
K Ca[33] ScH
2
(H
2
)
2
Ti VH
2
(H
2
)
CrH2(H2)2 Mn FeH
2
(H
2
)
3
[34]
CoH(H
2
)
Ni(H
2
)
4
CuH(H2) ZnH
2
(H
2
)
GaH
3
(H
2
)
Rb Sr[33] YH
2
(H
2
)
3
Zr NbH
4
(H
2
)
4
Mo Tc RuH
2
(H
2
)
4
[35]
RhH3(H2) Pd(H
2
)
3
AgH(H2) CdH(H
2
)
InH
3
(H
2
)
[36]
Cs Ba[33] Hf TaH
4
(H
2
)
4
WH
4
(H
2
)
4
Re Os Ir PtH(H
2
)
AuH
3
(H
2
)
Hg Tl
Fr Ra Rf Db Sg Bh Hs Mt Ds Rg Cn Uut
32 18
LaH
2
(H
2
)
2
CeH
2
(H
2
)
PrH
2
(H
2
)
2
Nd Pm Sm Eu GdH
2
(H
2
)
Tb Dy Ho Er Tm Yb Lu
Ac ThH4(H2)4 Pa UH
4
(H
2
)
6
[31]
Np Pu Am Cm Bk Cf Es Fm Md No Lr
Legend
Assessed Not assessed

Hydrogen solutions

Hydrogen has a highly variable solubility in the elements. When the continuous phase of the solution is a metal, it is called a metallic hydride or interstitial hydride, on account of the position of the hydrogen within the crystal structure of the metal. In solution, hydrogen can occur in either the atomic or molecular form. For some elements, when hydrogen content exceeds its solubility, the excess precipitates out as a stoichiometric compound. The table below shows the solubility of hydrogen in each element as a molar ratio at 25 °C (77 °F) and 100 kPa.

He
LiH
<<0.01

[nb 1][37]
Be B C N O F Ne
NaH
<<0.01

[nb 2][38]
MgH
<0.01

[nb 3][39]
AlH
<<2×106

[nb 4][40]
Si P S Cl Ar
KH
<<0.01

[nb 5][41]
CaH
<<0.01

[nb 6][42]
ScH
≥1.86

[nb 7][43]
TiH
2.00

[nb 8][44]
VH
1.00

[nb 9][45]
Cr MnH
<5×106

[nb 10][46]
FeH
3×108

[47]
Co NiH
3×105

[48]
CuH
<1×107

[nb 11][49]
ZnH
<3×107

[nb 12][50]
Ga Ge As Se Br Kr
RbH
<<0.01

[nb 13][51]
Sr YH
≥2.85

[nb 14][52]
ZrH
≥1.70

[nb 15][53]
NbH
1.04

[nb 16][54]
Mo Tc Ru Rh PdH
0.724

[55]
AgH
3.84×1014

[56]
Cd In Sn Sb Te I Xe
CsH
<<0.01

[nb 17][57]
Ba Hf TaH
0.786

[nb 18][58]
W Re Os Ir Pt AuH
3.06×109

[55]
HgH
5×107

[59]
Tl Pb Bi Po At Rn
Fr Ra Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
LaH
≥2.03

[nb 19][60]
CeH
≥2.5

[nb 20][61]
Pr Nd Pm SmH
3.00

[62]
Eu Gd Tb Dy Ho Er Tm Yb Lu
Ac Th Pa UH
≥3.00

[nb 21][63]
Np Pu Am Cm Bk Cf Es FM Md No Lr
Legend
Miscible Undetermined

Notes

  1. Upper limit imposed by phase diagram, taken at 370 K.
  2. Upper limit imposed by phase diagram.
  3. Upper limit imposed by phase diagram, taken at 650 K and 25 MPa.
  4. Upper limit imposed by phase diagram, taken at 580 K.
  5. Upper limit imposed by phase diagram.
  6. Upper limit imposed by phase diagram, taken at 500 K.
  7. Lower limit imposed by phase diagram.
  8. Limit imposed by phase diagram.
  9. Limit imposed by phase diagram.
  10. Upper limit imposed by phase diagram, taken at 500 K.
  11. Upper limit imposed by phase diagram, taken at 1000 K.
  12. Upper limit at 500 K.
  13. Upper limit imposed by phase diagram.
  14. Lower limit imposed by phase diagram.
  15. Lower limit imposed by phase diagram.
  16. Limit imposed by phase diagram.
  17. Upper limit imposed by phase diagram.
  18. Limit imposed by phase diagram.
  19. Lower limit imposed by phase diagram.
  20. Lower limit imposed by phase diagram.
  21. Lower limit imposed by phase diagram.

References

  1. Concise Inorganic Chemistry J.D. Lee
  2. Main Group Chemistry, 2nd Edition A.G. Massey
  3. Advanced Inorganic Chemistry F. Albert Cotton, Geoffrey Wilkinson
  4. Inorganic chemistry, Catherine E. Housecroft,A. G. Sharpe
  5. Inorganic Chemistry Gary Wulfsberg 2000
  6. Data in KJ/mole gas-phase source: Modern Inorganic Chemistry W.L. Jolly
  7. 7.0 7.1 Wang, Xuefeng; Andrews, Lester (12 July 2007). "Infrared spectra and theoretical calculations of lithium hydride clusters in solid hydrogen, neon, and argon". The Journal of Physical Chemistry A (American Chemical Society) 111 (27): 6008–6019. doi:10.1021/jp071251y.
  8. Tague Jr., Thomas J.; Andrews, Lester (December 1993). "Reactions of beryllium atoms with hydrogen. Matrix infrared spectra of novel product molecules". Journal of the American Chemical Society (PDF) (American Chemical Society) 115 (25): 12111–12116. doi:10.1021/ja00078a057.
  9. Tague Jr., Thomas J.; Andrews, Lester (June 1994). "Reactions of pulsed-laser evaporated boron atoms with hydrogen. Infrared spectra of boron hydride intermediate species in solid argon". Journal of the American Chemical Society (American Chemical Society) 116 (11): 4970–4976. doi:10.1021/ja00090a048. Retrieved 23 September 2013.
  10. Wang, Xuefeng; Andrews, Lester (2 August 2007). "Sodium hydride clusters in solid hydrogen and neon: infrared spectra and theoretical calculations". The Journal of Physical Chemistry A (American Chemical Society) 111 (30): 7098–7104. doi:10.1021/jp0727852.
  11. Chertihin, George V.; Andrews, Lester (October 1993). "Reactions of pulsed-laser ablated aluminum atoms with hydrogen: Infrared spectra of aluminum hydride (AlH, AlH2, AlH3, and Al2H2) species". The Journal of Physical Chemistry (American Chemical Society) 97 (40): 10295–10300. doi:10.1021/j100142a007. Retrieved 23 September 2013.
  12. Wang, Xuefeng; Andrews, Lester (1 January 2003). "Chromium hydrides and dihydrogen complexes in solid neon, argon, and hydrogen: Matrix infrared spectra and quantum chemical calculations". The Journal of Physical Chemistry A (American Chemical Society) 107 (4): 570–578. doi:10.1021/jp026930h. Retrieved 30 September 2013.
  13. 13.0 13.1 Wang, Xuefeng; Andrews, Lester (30 April 2003). "Matrix infrared spectra and density functional theory calculations of manganese and rhenium hydrides". The Journal of Physical Chemistry A (American Chemical Society) 107 (20): 4081–4091. doi:10.1021/jp034392i. Retrieved 24 September 2013.
  14. 14.0 14.1 Wang, Xuefeng; Andrews, Lester (18 December 2008). "Infrared Spectra and Theoretical Calculations for Fe, Ru, and Os Metal Hydrides and Dihydrogen Complexes". The Journal of Physical Chemistry A (ACS Publications) 113 (3): 551–563. doi:10.1021/jp806845h.
  15. Billups, W. E.; Chang, Sou-Chan; Hauge, Robert H.; Margrave, John L. (February 1995). "Low-Temperature Reactions of Atomic Cobalt with CH
    2
    N
    2
    , CH
    4
    , CH
    3
    D
    , CH
    2
    D
    2
    , CHD
    3
    , CD
    4
    , H
    2
    , D
    2
    , and HD". Journal of the American Chemical Society (ACS Publications) 117 (4): 1387–1392. doi:10.1021/ja00109a024.
  16. Li, S.; van Zee, R. J.; Weltner Jr., W.; Cory, M. G.; Zerner, M. C. (8 February 1997). "Magneto-Infrared Spectra of Matrix-Isolated NiH and NiH
    2
    Molecules and Theoretical Calculations of the Lowest Electronic States of NiH
    2
    ". The Journal of Chemical Physics (AIP Publishing) 106 (6): 2055–2059. doi:10.1063/1.473342.
  17. 17.0 17.1 17.2 Wang, Xuefeng; Andrews, Lester (13 September 2003). "Infrared spectra and DFT calculations for the coinage metal hydrides MH, {{Chem|(H|2|)MH}}, MH
    2
    , M
    2
    H
    , M
    2
    H
    , and (H
    2
    )CuHCu
    in solid argon, neon, and hydrogen"
    . The Journal of Physical Chemistry A (American Chemical Society) 107 (41): 8492–8505. doi:10.1021/jp0354346. Retrieved 24 September 2013.
  18. 18.0 18.1 Greene, Tim M.; Brown, Wendy; Andrews, Lester; Downs, Anthony J.; Chertihin, George V.; Runeberg , Nino; Pyykko, Pekka (May 1995). "Matrix infrared spectroscopic and ab initio studies of ZnH2, CdH2, and related metal hydride species". The Journal of Physical Chemistry (American Chemical Society) 99 (20): 7925–7934. doi:10.1021/j100020a014. Retrieved 23 September 2013.
  19. Wang, Xuefeng; Andrews, Lester (2 December 2003). "Infrared spectra of gallium hydrides in solid hydrogen: {{Chem|Ga|H|1,2,3}}, Ga
    2
    H
    2,4,6
    , and the GaH
    2,4
    anions"
    . The Journal of Physical Chemistry A (American Chemical Society) 107 (51): 11371–11379. doi:10.1021/jp035393d. Retrieved 23 September 2013.
  20. Wang, Xuefeng; Andrews, Lester (17 September 2005). "Matrix infrared spectra and density functional theory calculations of molybdenum hydrides". The Journal of Physical Chemistry A (Amercican Chemical Society) 109 (40): 9021–9027. doi:10.1021/jp053591u. Retrieved 30 September 2013.
  21. Wang, Xuefeng; Andrews, Lester (19 March 2002). "Infrared spectra of rhodium hydrides in solid argon, neon, and deuterium with supporting density functional calculations". The Journal of Physical Chemistry A (American Chemical Society) 106 (15): 3706–3713. doi:10.1021/jp013624f. Retrieved 24 September 2013.
  22. Andrews, Lester; Wang, Xuefeng; Alikhani, Mohammad Esmaïl; Manceron, Laurent (6 March 2001). "Observed and calculated infrared spectra of {{Chem|Pd(H|2|)|1,2,3}} complexes and palladium hydrides in solid argon and neon". The Journal of Physical Chemistry A (American Chemical Society) 15 (13): 3052–3063. doi:10.1021/jp003721t. Retrieved 24 September 2013.
  23. Wang, Xuefeng; Andrews, Lester (24 April 2004). "Infrared spectra of indium hydrides in solid hydrogen and neon". The Journal of Physical Chemistry A (American Chemical Society) 108 (20): 4440–4448. doi:10.1021/jp037942l. Retrieved 23 September 2013.
  24. Wang, Xuefeng; Andrews, Lester (15 December 2011). "Tetrahydrometalate Species VH
    2
    (H
    2
    )
    , NbH
    4
    , and TaH
    4
    : Matrix Infrared Spectra and Quantum Chemical Calculations". The Journal of Physical Chemistry A (ACS Publications) 115 (49): 14175–14183. doi:10.1021/jp2076148.
  25. Wang, Xuefeng; Andrews, Lester (29 June 2002). "Neon Matrix Infrared Spectra and DFT Calculations of Tungsten Hydrides WH
    x
    (x = 1−4, 6)". The Journal of Physical Chemistry A (ACS Publications) 106 (29): 6720–6729. doi:10.1021/jp025920d.
  26. Andrews, Lester; Wang, Xeufeng; Manceron, Laurent (22 January 2001). "Infrared Spectra and Density Functional Calculations of Platinum Hydrides". The Journal of Chemical Physics (AIP Publishing) 114 (4): 1559. doi:10.1063/1.1333020.
  27. Wang, Xuefeng; Andrews, Lester (2 October 2004). "Solid  Mercury  Dihydride:  Mercurophilic  Bonding  in Molecular  HgH
    2
    Polymers". Inorganic Chemistry (ACS Publications) 43 (22): 7146–7150. doi:10.1021/ic049100m.
  28. Wang, Xuefeng; Andrews, Lester (19 March 2004). "Infrared Spectra of Thallium Hydrides in Solid Neon, Hydrogen, and Argon". The Journal of Physical Chemistry A (ACS Publications) 108 (16): 3396–3402. doi:10.1021/jp0498973.
  29. Willson, Stephen P.; Andrews, Lester (2 March 2000). "Characterization of the reaction products of laser-ablated lanthanide metal atoms with molecular hydrogen. Infrared spectra of LnH, {{Chem|LnH|2}}, LnH
    3
    , and LnH
    4
    molecules in solid argon". The Journal of Physical Chemistry A (ACS Publications) 104 (8): 1640–1647. doi:10.1021/jp993038a.
  30. Wang, Xuefeng; Andrews, Lester; Gagliardi, Laura (28 February 2008). "Infrared Spectra of ThH
    2
    , ThH
    4
    , and the Hydride Bridging ThH
    4
    (H
    2
    )
    x
    (x = 1−4) Complexes in Solid Neon and Hydrogen". The Journal of Physical Chemistry A (ACS Publications) 112 (8): 1754–1761. doi:10.1021/jp710326k.
  31. 31.0 31.1 Raab, Juraj; Lindh, Roland H.; Wang, Xuefeng; Andrews, Lester; Gagliardi, Laura (19 May 2007). "A Combined Experimental and Theoretical Study of Uranium Polyhydrides with New Evidence for the Large Complex UH
    4
    (H
    2
    )
    6
    ". The Journal of Physical Chemistry A (ACS Publications) 111 (28): 6383–6387. doi:10.1021/jp0713007.
  32. Wang, Xuefeng; Lester Andrews (2004). "Infrared Spectra of Magnesium Hydride Molecules, Complexes, and Solid Magnesium Dihydride". The Journal of Physical Chemistry A 108 (52): 11511–11520. doi:10.1021/jp046410h. ISSN 1089-5639.
  33. 33.0 33.1 33.2 Wang, Xuefeng; Andrews, Lester (December 2004). "Metal Dihydride (MH 2 ) and Dimer (M H2 ) Structures in Solid Argon, Neon, and Hydrogen (M = Ca, Sr, and Ba): Infrared Spectra and Theoretical Calculations". The Journal of Physical Chemistry A 108 (52): 11500–11510. doi:10.1021/jp046046m.
  34. Wang, Xuefeng; Andrews, Lester (18 December 2008). "Infrared spectra and theoretical calculations for Fe, Ru, and Os metal hydrides and dihydrogen complexes". The Journal of Physical Chemistry A (American Chemical Society) 113 (3): 551–563. doi:10.1021/jp806845h. Retrieved 24 September 2013.
  35. Wang, Xuefeng; Andrews, Lester (13 August 2008). "Infrared spectrum of the RuH
    2
    (H
    2
    )
    4
    complex in solid hydrogen". Organometallics (American Chemical Society) 27 (17): 4273–4276. doi:10.1021/om800507u.
  36. Wang, Xuefeng; Andrews, Lester (May 2004). "Infrared Spectra of Indium Hydrides in Solid Hydrogen and Neon". The Journal of Physical Chemistry A 108 (20): 4440–4448. doi:10.1021/jp037942l.
  37. Songster, J.; Pélton, A. D. (1 June 1993). "The H-Li (Hydrogen-Lithium) System". Journal of Phase Equilibria (Springer-Verlag) 14 (3): 373–381. doi:10.1007/BF02668238.
  38. San-Martin, A.; Manchester, F. D. (1 June 1990). "The H-Na (Hydrogen-Sodium) System". Bulletin of Alloy Phase Diagrams (Springer US) 11 (3): 287–294. doi:10.1007/BF03029300.
  39. San-Martin, A.; Manchester, F. D. (1 October 1987). "The H−Mg (Hydrogen-Magnesium) System". Journal of Phase Equilibria (Springer-Verlag) 8 (5): 431–437. doi:10.1007/BF02893152.
  40. San-Martin, A; Manchester, F. D. (1 February 1992). "The Al-H (Aluminum-Hydrogen) System". Journal of Phase Equilibria (Springer-Verlag) 13 (1): 17–21. doi:10.1007/BF02645371.
  41. Sangster, J.; Pelton, A. D. (1 August 1997). "The H-K (Hydrogen-Potassium) System". Journal of Phase Equilibria (Springer-Verlag) 18 (4): 387–389. doi:10.1007/s11669-997-0066-y.
  42. Predel, B. (1993). "Ca-H (Calcium-Hydrogen)". In Madelung, O. Ca-Cd – Co-Zr. Springer Berlin Heidelberg. pp. 1–3. ISBN 978-3-540-47411-1.
  43. Manchester, F. D.; Pitre, J. M. (1 April 1997). "The H-Sc (Hydrogen-Scandium) System". Journal of Phase Equilibria (Springer-Verlag) 18 (2): 194–205. doi:10.1007/BF02665706.
  44. San-Martin, A.; Manchester, F. D. (1 February 1987). "The H−Ti (Hydrogen-Titanium) System". Bulletin of Alloy Phase Diagrams (Springer US) 8 (1): 30–42. doi:10.1007/BF02868888.
  45. Predel, B. (1996). "H-V (Hydrogen-Vanadium)". In Madelung, O. Ga-Gd – Hf-Zr. Springer Berlin Heidelberg. pp. 1–5. ISBN 978-3-540-44996-6.
  46. San-Martin, A.; Manchester, F. D. (1 June 1995). "The H-Mn (Hydrogen-Manganese) System". Journal of Phase Equilibria (Springer-Verlag) 16 (3): 255–262. doi:10.1007/BF02667311.
  47. San-Martin, A.; Manchester, F. D. (1 April 1990). "The Fe-H (Iron-Hydrogen) System". Bulletin of Alloy Phase Diagrams (Springer-Verlag) 11 (2): 173–184. doi:10.1007/BF02841704.
  48. Wayman, M. L.; Weatherly, G. C. (1 October 1989). "The H−Ni (Hydrogen-Nickel) System". Bulletin of Alloy Phase Diagrams (Springer US) 10 (5): 569–580. doi:10.1007/BF02882416.
  49. Predel, B. (1994). "Cu-H (Copper-Hydrogen)". In Madelung, O. Cr-Cs – Cu-Zr. Springer Berlin Heidelberg. pp. 1–3. ISBN 978-3-540-47417-3.
  50. San-Martin, A.; Manchester, F. D. (1 December 1989). "The H-Zn (Hydrogen-Zinc) System". Bulletin of Alloy Phase Diagrams (Springer US) 10 (6): 664–666. doi:10.1007/BF02877640.
  51. Sangster, J.; Pelton, A. D. (1 February 1994). "The H-Rb (Hydrogen-Rubidium) System". Journal of Phase Equilibria (Springer-Verlag) 15 (1): 87–89. doi:10.1007/BF02667687.
  52. Khatamian, D.; Manchester, F. D. (1 June 1988). "The H−Y (Hydrogen-Yttrium) System". Bulletin of Alloy Phase Diagrams (Springer US) 9 (3): 252–260. doi:10.1007/BF02881276.
  53. Zuzek, E.; Abriata, J. P.; San-Martin, A.; Manchester, F. D. (1 August 1990). "The H-Zr (Hydrogen-Zirconium) System". Bulletin of Alloy Phase Diagrams (Springer-Verlag) 11 (4): 385–395. doi:10.1007/BF02843318.
  54. Okamoto, H. (1 April 2013). "H-Nb (Hydrogen-Niobium)". Journal of Phase Equilibria and Diffusion (Springer US) 34 (2): 163–164. doi:10.1007/s11669-012-0165-2.
  55. 55.0 55.1 Materials Science International Team (2006). "Au-H-Pd (Gold - Hydrogen - Palladium)". In Effenberg, G.; Ilyenko, S. Noble Metal Systems. Selected Systems from Ag-Al-Zn to Rh-Ru-Sc. Berlin: Springer Berlin Heidelberg. pp. 1–8. ISBN 978-3-540-46994-0.
  56. Subramanian, P.R (1 December 1991). "The Ag-H (Silver-Hydrogen) System". Journal of Phase Equilibria (Springer-Verlag) 12 (6): 649–651. doi:10.1007/BF02645164.
  57. Songster, J.; Pelton, A. D. (1 February 1994). "The H-Cs (Hydrogen-Cesium) System". Journal of Phase Equilibria (Springer-Verlag) 15 (1): 84–86. doi:10.1007/BF02667686.
  58. San-Martin, A.; Manchester, F. D. (1 June 1991). "The H-Ta (Hydrogen-Tantalum) System". Journal of Phase Equilibria (Springer-Verlag) 12 (3): 332–343. doi:10.1007/BF02649922.
  59. Guminski, C. (1 October 2002). "The H-Hg (Hydrogen-Mercury) System". Journal of Phase Equilibria (Springer-Verlag) 23 (5): 448–450. doi:10.1361/105497102770331460.
  60. Khatamian, D.; Manchester, F. D. (1 February 1990). "The H-La (Hydrogen-Lanthanum) System". Bulletin of Alloy Phase Diagrams (Springer-Verlag) 11 (1): 90–99. doi:10.1007/BF02841589.
  61. Manchester, F. D.; Pitre, J. M. (1 February 1997). "The Ce-H (Cerium-Hydrogen) system". Journal of Phase Equilibria (Springer-Verlag) 18 (1): 63–77. doi:10.1007/BF02646759.
  62. Zinkevich, M.; Mattern, N.; Handstein, A.; Gutfleisch, O. (13 June 2002). "Thermodynamics of Fe–Sm, Fe–H, and H–Sm Systems and its Application to the Hydrogen–Disproportionation–Desorption–Recombination (HDDR) Process for the System Fe
    17
    Sm
    2
    –H
    2
    ". Journal of Alloys and Compounds (Elsevier) 339 (1-2): 118–139. doi:10.1016/S0925-8388(01)01990-9.
  63. Manchester, F. D.; San-Martin, A. (1 June 1995). "The H-U (Hydrogen-Uranium) System". Journal of Phase Equilibria (Springer-Verlag) 16 (3): 263–275. doi:10.1007/BF02667312.