BeppoSAX

BeppoSAX

Artist's conception of BeppoSax in space
(credit: the Italian Space Agency (ASI) and BeppoSAX Science Data Center (SDC))
General information
Organization ASI / NIVR
Launch date 30 April 1996
Deorbited 29 April 2003
Mass 1400 kg
Orbit height 600 km
Orbit period 96 min
Telescope style 4 units of 30 grazing incidence nested coaxial and confocal mirrors
Wavelength X-ray
Diameter 16.2 to 6.8 cm
Collecting area 150 cm2 @ 6 keV (MECS)
22 cm2 @ 0.25 keV (LECS)
Focal length 1.85 m
Instruments
MECS 3 telescopes/proportional counters
LECS telescope/proportional counter
HPGSPC collimated proportional counter
PDS 4 scintillation detectors
WFC 2 cameras/proportional counters
Website www.asdc.asi.it/bepposax/

BeppoSAX was an ItalianDutch satellite for X-ray astronomy which played a crucial role in resolving the origin of gamma-ray bursts (GRBs), the most energetic events known in the universe. It was the first X-ray mission capable of simultaneously observing targets over more than 3 decades of energy, from 0.1 to 300 kiloelectronvolts (keV) with relatively large area, good (for the time) energy resolution and imaging capabilities (with a spatial resolution of 1 arc minute between 0.1 and 10 keV). BeppoSAX was a major programme of the Italian Space Agency (ASI) with the participation of the Netherlands Agency for Aerospace Programmes (NIVR). The prime contractor for the space segment was Alenia while Nuova Telespazio led the development of the ground segment. Most of the scientific instruments were developed by the Italian National Research Council (CNR) while the Wide Field Cameras were developed by the Netherlands Institute for Space Research (SRON) and the LECS was developed by the astrophysics division of the European Space Agency's ESTEC facility.

BeppoSAX was named in honour of the Italian physicist Giuseppe "Beppo" Occhialini. SAX stands for "Satellite per Astronomia a raggi X" or "Satellite for X-ray Astronomy".

X-ray observations cannot be performed from ground-based telescopes, since Earth's atmosphere blocks most of the incoming radiation.

One of BeppoSAX's main achievements was the identification of numerous gamma ray bursts with extra-galactic objects. (See the linked article for details.)

Launched by an Atlas-Centaur on 30 April 1996 into a low inclination (<4 degree) low-Earth orbit, the expected operating life of two years was extended to April 30, 2002 due to high scientific interest in the mission and the continued good technical status. After this date, the orbit started to decay rapidly and various subsystems were starting to fail making it no longer worthwhile to conduct scientific observations.

On April 29, 2003, the satellite ended its life falling into the Pacific Ocean.

Spacecraft characteristics

A model of BeppoSAX.
BeppoSAX particle monitor.
BeppoSAX X-ray concentrator mirror unit.
BeppoSAX Medium Energy GAS scintellation Proportional Counter.

Instrumentation

BeppoSAX contained five science instruments:

The first four instruments (often called Narrow Field Instruments or NFI) point to the same direction, and allow observations of an object in a broad energy band of 0.1 to 300 keV (16 to 48,000 attojoules (aJ)).

The WFC contained two coded aperture cameras operating in the 2 to 30 keV (320 to 4,800 aJ) range and each covering a region of 40 x 40 degrees (20 by 20 degrees full width at half maximum) on the sky. The WFC was complemented by the shielding of PDS which had a (nearly) all-sky view in the 100 to 600 keV (16,000 to 96,000 aJ) band, ideal for detecting gamma ray bursts (GRB).

The PDS shielding has poor angular resolution. In theory, after a GRB was seen in the PDS, the position was refined first with the WFC. However, due to the many spikes in the PDS, in practice a GRB was found using the WFC, often corroborated by a BATSE-signal. The position up to arcminute precision - depending on the signal to noise ratio of the burst - was found using the deconvoluted WFC-image. The coordinates were speedily sent out as an International Astronomical Union (IAU) and Gamma-ray burst Coordinate Network Circular. After this, immediate follow-up observations with the NFI and optical observatories around the world allowed accurate positioning of the GRB and detailed observations of the X-ray, optical and radio afterglow.

The MECS contained three identical gas scintillation proportional counters operating in the 1.3 to 10 keV (208 to 1602 aJ) range. On 6 May 1997 one of the three identical MECS units was lost when a fault developed in the High Voltage power supply.

The LECS was similar to the MECS units, expect that it had a thinner window that allows photons with lower energies down to 0.1 keV (16 aJ) to pass through and operated in a "driftless" mode which is necessary to detect the lowest energy X-rays as these would be lost in the low field regime near the entrance window of a conventional GSPC. The LECS data above 4 keV (641 aJ) is not usable due to calibration issues probably caused by the driftless design. The LECS and MECS had imaging capability, whereas the high-energy narrow field instruments were non-imaging.

The HPGSPC was also a gas scintillation proportional counter, operating at a high (5 atmospheres) pressure. High pressure equals high density, and dense photon-stopping material allowed detection of photons up to 120 keV (19,000 aJ).

The PDS was a crystal (sodium iodide / caesium iodide) scintillator detector capable of absorbing photons up to 300 keV (48,000 aJ). The spectral resolution of the PDS was rather modest when compared to the gas detectors, but the low background counting rate resulting from the low inclination BeppoSAX orbit and good background rejection capabilities meant that the PDS remains one of the most sensitive high-energy instruments flown.

References

Wikimedia Commons has media related to BeppoSAX.

External links