Bcl-2 homologous antagonist killer

This article is about the mammalian BAK1 gene. For the plant gene with the same symbol, see BRI1-associated receptor kinase 1.
BCL2-antagonist/killer 1

PDB rendering based on 2ims.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
SymbolsBAK1 ; BAK; BAK-LIKE; BCL2L7; CDN1
External IDsOMIM: 600516 MGI: 1097161 HomoloGene: 917 ChEMBL: 5609 GeneCards: BAK1 Gene
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez57812018
EnsemblENSG00000030110ENSMUSG00000057789
UniProtQ16611O08734
RefSeq (mRNA)NM_001188NM_007523
RefSeq (protein)NP_001179NP_031549
Location (UCSC)Chr 20:
31.28 – 31.28 Mb
Chr 17:
27.02 – 27.03 Mb
PubMed search

Bcl-2 homologous antagonist/killer is a protein that in humans is encoded by the BAK1 gene.[1][2] BAK1 orthologs [3] have been identified in most mammals for which complete genome data are available.

The BAK protein is a pro-apoptotic member of the Bcl-2 gene family which is involved in initiating apoptosis. Dysregulation of the BAK gene has been implicated in human gastrointestinal cancers, indicating that the gene plays a part in the pathogenesis of some cancers.[4]

Overview of signal transduction pathways involved in apoptosis.

Function

The protein encoded by this gene belongs to the BCL2 protein family. BCL2 family members form oligomers or heterodimers and act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities. This protein localizes to mitochondria, and functions to induce apoptosis. It interacts with and accelerates the opening of the mitochondrial voltage-dependent anion channel, which leads to a loss in membrane potential and the release of cytochrome c. This protein also interacts with the tumor suppressor P53 after exposure to cell stress.[5]

BAK1 gene variation

Recently, one study of the role of genetics in abdominal aortic aneurism (AAA) showed that different BAK1 variants can exist in both diseased and nondiseased AA tissues compared to matching blood samples.[6] Since its publication, this observation has raised many discussions among scientific community because it seems to jeopardize the current paradigm that all cells have the same genomic DNA. However, BAK1 gene variants in different tissues may be easily explained by the expression of BAK1 gene on chromosome 6 and one its edited copies on chromosome 20. This conjecture reconciles both the current paradigm and the observation of BAK1 gene variation in different tissues.[7][8] However, the authors of the BAK1 gene variations original article have published a response.[7]

Interactions

BAK1 has been shown to interact with:

References

  1. Chittenden T, Harrington EA, O'Connor R, Flemington C, Lutz RJ, Evan GI, Guild BC (May 1995). "Induction of apoptosis by the Bcl-2 homologue Bak". Nature 374 (6524): 733–6. doi:10.1038/374733a0. PMID 7715730.
  2. Kiefer MC, Brauer MJ, Powers VC, Wu JJ, Umansky SR, Tomei LD, Barr PJ (May 1995). "Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak". Nature 374 (6524): 736–9. doi:10.1038/374736a0. PMID 7715731.
  3. "OrthoMaM phylogenetic marker: BAK1 coding sequence".
  4. Qiang-Song Tong et al. (2004). "BAK overexpression mediates p53-independent apoptosis inducing effects on human gastric cancer cells". BMC Cancer 4: 33. doi:10.1186/1471-2407-4-33. PMC 481072. PMID 15248898.
  5. "Entrez Gene: BAK1 BCL2-antagonist/killer 1".
  6. Gottlieb B, Chalifour LE, Mitmaker B, Sheiner N, Obrand D, Abraham C, Meilleur M, Sugahara T, Bkaily G, Schweitzer M (July 2009). "BAK1 gene variation and abdominal aortic aneurysms". Hum. Mutat. 30 (7): 1043–7. doi:10.1002/humu.21046. PMID 19514060.
  7. 7.0 7.1 Hatchwell E (January 2010). "BAK1 gene variation and abdominal aortic aneurysms-variants are likely due to sequencing of a processed gene on chromosome 20". Hum. Mutat. 31 (1): 108–9; author reply 110–1. doi:10.1002/humu.21147. PMID 19847788.
  8. Michel Eduardo Beleza Yamagishi (2009). "A simpler explanation to BAK1 gene variation in Aortic and Blood tissues". arXiv:0909.2321 [q-bio.GN].
  9. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.
  10. Zhang H, Nimmer P, Rosenberg SH, Ng SC, Joseph M (August 2002). "Development of a high-throughput fluorescence polarization assay for Bcl-x(L)". Anal. Biochem. 307 (1): 70–5. doi:10.1016/s0003-2697(02)00028-3. PMID 12137781.
  11. Whitfield J, Harada K, Bardelle C, Staddon JM (November 2003). "High-throughput methods to detect dimerization of Bcl-2 family proteins". Anal. Biochem. 322 (2): 170–8. doi:10.1016/j.ab.2003.07.014. PMID 14596824.
  12. 12.0 12.1 Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM, Huang DC (June 2005). "Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins". Genes Dev. 19 (11): 1294–305. doi:10.1101/gad.1304105. PMC 1142553. PMID 15901672.
  13. Zheng TS (February 2001). "Death by design: the big debut of small molecules". Nat. Cell Biol. 3 (2): E43–6. doi:10.1038/35055145.
  14. Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, Dawson MI, Reed JC, Zhang XK (February 2004). "Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3". Cell 116 (4): 527–40. doi:10.1016/s0092-8674(04)00162-x. PMID 14980220.
  15. Enyedy IJ, Ling Y, Nacro K, Tomita Y, Wu X, Cao Y, Guo R, Li B, Zhu X, Huang Y, Long YQ, Roller PP, Yang D, Wang S (December 2001). "Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening". J. Med. Chem. 44 (25): 4313–24. doi:10.1021/jm010016f. PMID 11728179.
  16. 16.0 16.1 Perfettini JL, Kroemer RT, Kroemer G (May 2004). "Fatal liaisons of p53 with Bax and Bak". Nat. Cell Biol. 6 (5): 386–8. doi:10.1038/ncb0504-386. PMID 15122264.
  17. Weng C, Li Y, Xu D, Shi Y, Tang H (March 2005). "Specific cleavage of Mcl-1 by caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells". J. Biol. Chem. 280 (11): 10491–500. doi:10.1074/jbc.M412819200. PMID 15637055.
  18. Bae J, Leo CP, Hsu SY, Hsueh AJ (August 2000). "MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain". J. Biol. Chem. 275 (33): 25255–61. doi:10.1074/jbc.M909826199. PMID 10837489.

Further reading