Bacterial transcription

Bacterial transcription or prokaryotic transcription is the process in which messenger RNA transcripts of genetic material in prokaryotes are produced, to be translated for the production of proteins. Bacterial transcription occurs in the cytoplasm alongside translation. Unlike in eukaryotes, prokaryotic transcription and translation can occur simultaneously. This is impossible in eukaryotes, where transcription occurs in a membrane-bound nucleus while translation occurs outside the nucleus in the cytoplasm. In prokaryotes genetic material is not enclosed in a membrane-enclosed nucleus and has access to ribosomes in the cytoplasm.[1]

Transcription is known to be controlled by a variety of regulators in prokaryotes. Many of these transcription factors are homodimers containing helix-turn-helix DNA-binding motifs.[2]

Initiation

The following steps occur, in order, for transcription initiation:

Elongation

Promoters can differ in "strength"; that is, how actively they promote transcription of their adjacent DNA sequence. Promoter strength is in many (but not all) cases, a matter of how tightly RNA polymerase and its associated accessory proteins bind to their respective DNA sequences. The more similar the sequences are to a consensus sequence, the stronger the binding is. Additional transcription regulation comes from transcription factors that can affect the stability of the holoenzyme structure at initiation.

Most transcripts originate using adenosine-5'-triphosphate (ATP) and, to a lesser extent, guanosine-5'-triphosphate (GTP) (purine nucleoside triphosphates) at the +1 site. Uridine-5'-triphosphate (UTP) and cytidine-5'-triphosphate (CTP) (pyrimidine nucleoside triphosphates) are disfavoured at the initiation site.

Termination

Two termination mechanisms are well known:

References

  1. Lewin, Benjamin (2006). Essential genes (Internat. Ed. ed.). New Jersey: Pearson Prentice Hall [u.a.] ISBN 0-13-148988-7.
  2. Huffman, JL; Brennan, RG (February 2002). "Prokaryotic transcription regulators: more than just the helix-turn-helix motif.". Current opinion in structural biology 12 (1): 98–106. doi:10.1016/s0959-440x(02)00295-6. PMID 11839496.

External links