Autoclave

For other uses, see Autoclave (disambiguation).
Square Section Autoclave
An example of a square chamber autoclave
Uses Sterilization
Inventor Charles Chamberland
Manufacturer Astell Scientific
Model Square Section
Related items Waste autoclave

An autoclave is a pressure chamber used to sterilize equipment and supplies by subjecting them to high pressure saturated steam at 121 °C (249°F) for around 15–20 minutes depending on the size of the load and the contents.[1] It was invented by Charles Chamberland in 1879,[2] although a precursor known as the steam digester was created by Denis Papin in 1679.[3] The name comes from Greek auto-, ultimately meaning self, and Latin clavis meaning key—a self-locking device.[4]

Other types of autoclave are used in the chemical industry to cure coatings, vulcanize rubber and for hydrothermal synthesis, growing crystals under high temperatures and pressures. Synthetic quartz crystals used in the electronic industry are grown in autoclaves.

Uses

Sterilization autoclaves are widely used in microbiology, medicine, podiatry, tattooing, body piercing, veterinary science, mycology, dentistry, and prosthetics fabrication. They vary in size and function depending on the media to be sterilized.

Typical loads include laboratory glassware, other equipment and waste, surgical instruments and medical waste.[5]

A notable growing application of autoclaves is the pre-disposal treatment and sterilization of waste material, such as pathogenic hospital waste. Machines in this category largely operate under the same principles as conventional autoclaves in that they are able to neutralize potentially infectious agents by utilizing pressurized steam and superheated water. A new generation of waste converters is capable of achieving the same effect without a pressure vessel to sterilize culture media, rubber material, gowns, dressing, gloves, etc. It is particularly useful for materials which cannot withstand the higher temperature of a hot air oven.[6]

Autoclaves are also widely used to cure composites and in the vulcanization of rubber.[7] The high heat and pressure that autoclaves allow help to ensure that the best possible physical properties are repeatably attainable. The aerospace industry and sparmakers (for sailboats in particular) have autoclaves well over 50 feet (15 m) long, some over 10 feet (3.0 m) wide.

Air removal

It is very important to ensure that all of the trapped air is removed from the autoclave before activation, as trapped air is a very poor medium for achieving sterility. Steam at 134 °C can achieve in three minutes the same sterility that hot air at 160 °C can take two hours to achieve.[8] Methods of achieving air removal include:

Downward displacement (or gravity-type): As steam enters the chamber, it fills the upper areas first as it is less dense than air. This compresses the air to the bottom, forcing it out through a drain which often contains a temperature-sensing device. Only when air evacuation is complete does the discharge stop. Flow is usually controlled by a steam trap or a solenoid valve, but bleed holes are sometimes used, often in conjunction with a solenoid valve. As the steam and air mix it is also possible to force out the mixture from locations in the chamber other than the bottom.

Steam pulsing: air dilution by using a series of steam pulses, in which the chamber is alternately pressurized and then depressurized to near atmospheric pressure.

Vacuum pumps: a vacuum pump sucks air or air/steam mixtures from the chamber. (Explained here)

Superatmospheric cycles: achieved with a vacuum pump. It starts with a vacuum followed by a steam pulse followed by a vacuum followed by a steam pulse. The number of pulses depends on the particular autoclave and cycle chosen.

Subatmospheric cycles: similar to the superatmospheric cycles, but chamber pressure never exceeds atmospheric pressure until they pressurize up to the sterilizing temperature.

In medicine

A medical autoclave is a device that uses steam to sterilize equipment and other objects. This means that all bacteria, viruses, fungi, and spores are inactivated. However, prions, such as those associated with Creutzfeldt-Jakob disease, may not be destroyed by autoclaving at the typical 134 °C for three minutes or 121 °C for 15 minutes. Also, some organisms, such as the archaeon Geogemma barosii, can survive at temperatures above 121 °C.

Autoclaves are found in many medical settings, laboratories, and other places that need to ensure the sterility of an object. Many procedures today employ single-use items rather than sterilizable, reusable items. This first happened with hypodermic needles, but today many surgical instruments (such as forceps, needle holders, and scalpel handles) are commonly single-use rather than reusable items (see waste autoclave). Autoclaves are of particular importance in poorer countries due to the much greater amount of equipment that is re-used. Providing stove-top or solar autoclaves to rural medical centres has been the subject of several proposed medical aid missions.

Because damp heat is used, heat-labile products (such as some plastics) cannot be sterilized this way or they will melt. Paper and other products that may be damaged by steam must also be sterilized another way. In all autoclaves, items should always be separated to allow the steam to penetrate the load evenly.

Autoclaving is often used to sterilize medical waste prior to disposal in the standard municipal solid waste stream. This application has become more common as an alternative to incineration due to environmental and health concerns raised because of the combustion by-products emitted by incinerators, especially from the small units which were commonly operated at individual hospitals. Incineration or a similar thermal oxidation process is still generally mandated for pathological waste and other very toxic and/or infectious medical waste.

In dentistry, autoclaves provide sterilisation of dental instruments according to health technical memorandum 01-05 (HTM01-05). According to HTM01-05, instruments can be kept, once sterilized using a vacuum autoclave for up to 12 months using sealed pouches.[9]

Quality assurance

Sterilization bags often have a "sterilization indicator mark" that typically darkens when the bag and its contents have been adequately processed. Comparing the marks on an unprocessed bag (L) and on a bag that has been properly cycled (R) will reveal an obvious visual difference.

There are physical, chemical, and biological indicators that can be used to ensure that an autoclave reaches the correct temperature for the correct amount of time. If a non-treated or improperly treated item can be confused for a treated item, then there is the risk that they will become mixed up, which, in some areas such as surgery, is critical.

Chemical indicators on medical packaging and autoclave tape change color once the correct conditions have been met, indicating that the object inside the package, or under the tape, has been appropriately processed. Autoclave tape is only a marker that steam and heat have activated the dye. The marker on the tape does not indicate complete sterility. A more difficult challenge device, named the Bowie-Dick device after its inventors, is also used to verify a full cycle. This contains a full sheet of chemical indicator placed in the center of a stack of paper. It is designed specifically to prove that the process achieved full temperature and time required for a normal minimum cycle of 274 degrees F for 3.5-4 minutes.

To prove sterility, biological indicators are used. Biological indicators contain spores of a heat-resistant bacterium, Geobacillus stearothermophilus. If the autoclave does not reach the right temperature, the spores will germinate when incubated and their metabolism will change the color of a pH-sensitive chemical. Some physical indicators consist of an alloy designed to melt only after being subjected to a given temperature for the relevant holding time. If the alloy melts, the change will be visible.

Some computer-controlled autoclaves use an F0 (F-nought) value to control the sterilization cycle. F0 values are set for the number of minutes of sterilization equivalent to 121 °C (250 °F) at 100 kPa (15 psi) above atmospheric pressure for 15 minutes . Since exact temperature control is difficult, the temperature is monitored, and the sterilization time adjusted accordingly.

References

  1. Microbiology, Jacquelyn Black, Prentice Hall,1993 pg 334
  2. "Chronological reference marks - Charles Chamberland (1851–1908)". Pasteur Institute. Archived from the original on 19 December 2006. Retrieved 2007-01-19.
  3. Hugo WB (July 1991). "A brief history of heat and chemical preservation and disinfection". J. Appl. Bacteriol. 71 (1): 9–18. doi:10.1111/j.1365-2672.1991.tb04657.x. PMID 1894581.
  4. "Online Etymology Dictionary". Etymonline.com. Retrieved 2012-06-04.
  5. "Sterilization Cycles". Consolidated Machine Corporation. Retrieved 2009-06-30.
  6. Seymour Stanton Block (2001). Disinfection, Sterilization, and Preservation. Lippincott Williams & Wilkins. ISBN 978-0-683-30740-5. Retrieved 19 January 2013.
  7. R. B. Simpson (28 February 2002). Rubber Basics. iSmithers Rapra Publishing. p. 161. ISBN 978-1-85957-307-5. Retrieved 19 January 2013.
  8. AS NZS 4815-2006 P33&P35
  9. Health Technical Memorandum 01-05. Retrieved 24 September 2014. "These instruments are suitable for storage for up to 12 months in their original packaging as long as their packaging is intact. Practices will need to have systems in place to be able to demonstrate that the 12-month storage time is not being exceeded."

Autoclave's Reliance on Data Loggers MadgeTech, Inc. (2014)