Augusto Sagnotti

Augusto Sagnotti
Born 1955
Rome, Italy
Nationality Italian
Fields Theoretical Physics
Institutions Scuola Normale Superiore
Alma mater University of Rome "La Sapienza", California Institute of Technology
Doctoral advisor John H. Schwarz
Doctoral students Massimo Bianchi and Gianfranco Pradisi (U. Roma "Tor Vergata"), Fabio Riccioni (U. Roma "La Sapienza"), Carlo Angelantonj (U Torino), Dario Francia (Scuola Normale Superiore)
Known for ultraviolet divergences of Einstein gravity, orientifolds, higher spins

Augusto Sagnotti (born 1955) is a Professor of Theoretical Physics at Scuola Normale (since 2005). Laurea in Electrical Engineering from the University of Rome "La Sapienza" in 1978 (advisors: Bruno Crosignani and Paolo Di Porto); and Ph.D. in Theoretical Physics from Caltech in 1983 (advisor: John H. Schwarz). He was Post-Doctoral Fellow at Caltech (1983–84) and Miller Research Fellow at U.C. Berkeley (1984–86). He was Junior Faculty at the University of Rome "Tor Vergata" from 1986 to 1994, then Associate Professor (1994–99) and Professor (2000-2005). He was also a visiting Professor at several international Institutions, including University of Brussels, CERN, DESY, UCLA, Princeton, Humboldt Universitat, University of Cambridge, University of Oxford, Ecole Normale Superieure, IHES, Ecole Polytechnique, UAM Madrid, U. Uppsala, U. Warsaw. His research activity has been devoted to the quantization of the gravitational field, to String Theory, to Conformal Field Theory and to Higher-Spin Gauge Fields.

Sagnotti's main contribution to physics is perhaps the analysis of the 2-loop divergences in Einstein's theory of General Relativity.[1][2] Moreover, he was the first to propose, in 1987, that the type I string theory can be obtained as an orientifold of type IIB string theory,[3] with 32 half-D9-branes added in the vacuum to cancel various anomalies [4][5] and offered the elucidation of the key properties of orientifold constructions and of Conformal Field Theory on non-orientable surfaces.[6][7][8][9][10] He also discovered the 10D "0B' string", including both open and closed strings, non supersymmetric but free of tachyons.[11][12] He has worked extensively on higher spins, arriving at a geometric formulation of their free field equations in terms of higher-spin curvatures.[13]

More recently, Sagnotti has been working on the proposal of a possible link between "brane supersymmetry breaking",[14][15][16][17] and the onset of the inflationary phase, and on the exploration of some of its possible imprints on the CMB,[18] in particular, the proposal that the low value of the CMB quadrupole[19] and a first peak for l ~5[20] be a manifestation of the onset of the inflationary phase.

Books

Awards and honors

Prof. Sagnotti received the Carosio Prize from the University of Rome “La Sapienza” in 1979, a Miller Fellowship from U.C. Berkeley in 1984, shared with Massimo Bianchi the 1994 SIGRAV Prize of the Italian Society of General Relativity and Gravitation and received the Margherita Hack Prize for Science in 2014 for his work on the quantization of gravity. He was also Andrejewski Lecturer at Humbodt Universitat in Berlin in 1999.

References

  1. M.H. Goroff and A. Sagnotti, "Quantum Gravity At Two Loops", Phys. Lett. B160 (1985) 81,
  2. M.H. Goroff and A. Sagnotti, "The Ultraviolet Behavior Of Einstein Gravity", Nucl. Phys. B266 (1986) 709
  3. A. Sagnotti, "Open Strings and their Symmetry Groups", IN *CARGESE 1987, PROCEEDINGS, NONPERTURBATIVE QUANTUM FIELD THEORY* 521-528 AND ROME II UNIV. - ROM2F-87-025 (87,REC.MAR.88) 12p [hep-th/0208020]
  4. A. Sagnotti, "A Note on the Green-Schwarz mechanism in open string theories", Phys. Lett. B294 (1992) 196 [hep-th/9210127]
  5. C. Angelantonj and A. Sagnotti, "Open strings", Phys. Rept. 1 [(Erratum-ibid.) 339] arXiv:hep-th/0204089
  6. G. Pradisi and A. Sagnotti, "Open String Orbifolds", Phys. Lett. B216 (1989) 59.
  7. M. Bianchi and A. Sagnotti, "On the systematics of open string theories", Phys. Lett. B247 (1990) 517
  8. M. Bianchi, G. Pradisi and A. Sagnotti, "Toroidal compactification and symmetry breaking in open string theories", Nucl. Phys. B376 (1992) 365.
  9. D. Fioravanti, G. Pradisi and A. Sagnotti, "Sewing constraints and nonorientable open strings" , Phys. Lett. B321 (1994) 349 [arXiv:hep-th/9311183]
  10. G. Pradisi, A. Sagnotti and Y.S. Stanev, "Completeness conditions for boundary operators in 2-D conformal field theory," Phys. Lett. B381 (1996) 97 [hep-th/9603097]
  11. A. Sagnotti, "Some properties of open string theories", in *Palaiseau 1995, Susy 95* 473-484 [hep-th/9509080].
  12. A. Sagnotti, "Surprises in open-string perturbation theory", Nucl. Phys. Proc. Suppl. 56B (1997) 332 [arXiv:hep-th/9702093]
  13. D. Francia and A. Sagnotti, "Free geometric equations for higher spins", Phys. Lett. B543 (2002) 303
  14. S. Sugimoto, "Anomaly cancellations in type I D9-D9-bar system and the USp(32) string theory", Prog. Theor. Phys. 102 (1999) 685 [arXiv:hep-th/9905159]
  15. I. Antoniadis, E. Dudas and A. Sagnotti, "Brane supersymmetry breaking", Phys. Lett. B464 (1999) 38 [arXiv:hep-th/9908023]
  16. C. Angelantonj, "Comments on open-string orbifolds with a non-vanishing B(ab)" Nucl. Phys. B566 (2000) 126 [arXiv:hep-th/9908064]
  17. G. Aldazabal and A.M. Uranga, "Tachyon-free non-supersymmetric type IIB orientifolds via brane-antibrane systems", JHEP 9910 (1999) 024 [arXiv:hep-th/9908072]
  18. N. Kitazawa and, A. Sagnotti (March 13, 2014). "Pre – Inflationary Clues from String Theory ?" (PDF). Retrieved 2014-07-23.
  19. "Quadrupole Types and Polarization Patterns". waynehu - Professor, Department of Astronomy and Astrophysics - University of Chicago. Retrieved 2014-07-25.
  20. Abdalla, Filipe B. "Observational Cosmology: The CMB" (PDF). UCL - http://zuserver2.star.ucl.ac.uk/~hiranya/PHAS3136/PHAS3136. Retrieved 2014-07-26.