Anton-Schmidt equation of state

The Anton-Schmidt equation is an empirical equation of state for crystalline solids, e.g. for pure metals or intermetallic compounds.[1] Quantum mechanical investigations of intermetallic compounds show that the dependency of the pressure under isotropic deformation can be described empirically by


   p(V) = - \beta \left(\frac{V}{V_0}\right)^n \ln\left(\frac{V}{V_0}\right)
.

Integration of p(V) leads to equation of the state for the total energy. The energy  E required to compress a solid to volume  V is


    E(V) = - \int_V^\infty p(V^\prime) dV^\prime

which gives


    E(V) = \frac{\beta V_0}{n+1} \left(\frac{V}{V_0}\right)^{n+1} \left[\ln\left(\frac{V}{V_0}\right) - \frac{1}{n+1}\right] - E_\infty
.

The fitting parameters  \beta, n and  V_0 are related to material properties, where

 \beta is the bulk modulus  K_0 at equilibrium volume  V_0 .
 n correlates with the Grüneisen parameter  n = -\frac{1}{6} - \gamma_G .[2][3]

However, the fitting parameter E_\infty does not reproduce the total energy of the free atoms.[4]

The total energy equation is used to determine elastic and thermal material constants in quantum chemical simulation packages.[4][5]

See also

References

  1. Mayer, B.; H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, P.C. Schmidt (2003). "Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases". Intermetallics 11 (1): 23–32. doi:10.1016/S0966-9795(02)00127-9. ISSN 0966-9795.
  2. Otero-de-la-Roza, et al., Gibbs2: A new version of the quasi-harmonic model code. Computer Physics Communications 182.8 (2011): 1708-1720. DOI: 10.1016/j.cpc.2011.04.016
  3. Jund, Philippe, et al., Physical properties of thermoelectric zinc antimonide using first-principles calculations., Physical Review B 85.22 (2012) .
  4. 4.0 4.1 Atomic Simulation Environment documentation of the Technical University of Denmark, Department of Physics
  5. Gilgamesh chemical software documentation of the Department of Chemical Engineering of Carnegie Mellon University