Air displacement pipette

Oxford Single-Channel Pipettes

Piston-driven air displacement pipettes are micropipettes, which are tools to handle volumes of liquid in the microliter scale pipettes. They are more commonly used in biology and biochemistry, but they are also used by chemists, though less commonly due to the risk of solvent damage to the pipettes and tips.

In 1972, several people of the University of Wisconsin–Madison (mainly Warren Gilson and Henry Lardy) enhanced the fixed-volume pipette, developing the pipette with a variable volume.[1]

Operation

These pipettes operate by piston-driven air displacement. A vacuum is generated by the vertical travel of a metal or ceramic piston within an airtight sleeve. As the piston moves upward, driven by the depression of the plunger, a vacuum is created in the space left vacant by the piston. Air from the tip rises to fill the space left vacant, and the tip air is then replaced by the liquid, which is drawn up into the tip and thus available for transport and dispensing elsewhere.

Sterile technique prevents liquid from coming into contact with the pipette itself. Instead, the liquid is drawn into and dispensed from a disposable pipette tip that is changed between transfers. Depressing the tip ejector button removes the tip, that is cast off without being handled by the operator and disposed of safely in an appropriate container.

The plunger is depressed to both draw up and dispense the liquid. Normal operation consists of depressing the plunger button to the first stop while the pipette is held in the air. The tip is then submerged in the liquid to be transported and the plunger is released in a slow and even manner. This draws the liquid up into the tip. The instrument is then moved to the desired dispensing location. The plunger is again depressed to the first stop, and then to the second stop, or 'blowout', position. This action will fully evacuate the tip and dispense the liquid. In an adjustable pipette, the volume of liquid contained in the tip is variable; it can be changed via a dial or other mechanism, depending on the model. Some pipettes include a small window which displays the currently selected volume. The plastic pipette tips are designed for aqueous solutions, and are not recommended for use with organic solvents that may dissolve the plastics of the tips or even the pipettes.

Schematic of an air displacement pipette. The "Digital volume indicator" is a dial display that indicates the digits (i.e. unrelated to electronic). The components vary between brands and different volume sizes have different components, for example the piston in a P2 is needle-like and can be separated with ease from the piston assembly whereas in a P10ML it is drum-like and over 1 cm in diameter and is enclosed in plastic.

Models

Several different type of air displacement pipettes exist:

Adjustable or fixed volume

The most common type of pipettes can be set to a certain volume within its operational range and are called adjustable. These pipettes commonly have a label with their volume range like "10 - 100 µl". These limits are indeed the limits as overwinding these limits would result in damage of the pipetting system. The fixed volume pipette cannot be changed. As there are less moving parts, the mechanism is less complex, resulting in more accurate volume measurement.

Volume

Three air-displacement pipettes that handle different volumes.

For optimal usage, every pipette supplier offers a broad range of different capacities. A small volume range of a pipette like 10 - 100 µl results in a much higher accuracy than a broad range from 0.1 - 1,000 µl per pipette.

Tips

For the pipetting process there are two components necessary: The pipette and disposable tips. The tips are plastic-made tools for single-use. In general, they are made of Polypropylene. Depending on the size of the pipette, the user needs specific tip sizes like:

The majority of tips have a color code for easy spotting like natural (clear) for low volumes (0.1 - 10 µL), yellow (10 - 200 µL), or blue (100 - 1000 µL). The corresponding pipette has the same color code, printed on the pipette.

For special applications, there are filter-tips available. These tips have a little piece of foam plastic in the upper conus to prevent sample aerosols contaminating the pipette.

In general, all tips are stored in 8x12 boxes for 96 pieces in an upright position. The spacing of tips in these boxes is usually standardised for multichannel pipette compatibility from a number of different suppliers.

Commonly available pipette volumes:

Name Min. volume (µL) Max. volume (µL) Colour on Gilson tip size (µL)
P2 0.2 2 Orange 10
P10 1 10 Red 10
P20 2 20 Lemon 200
P100 20 100 Salmon 200
P200 50 200 Yellow 200
P1000 200 1000 Blue 1000
P5000 1000 5000 Purple 5000
P10000 1000 10000 Sky 10000

Two major tip systems exist, called conical or cylidrical, depending on the shape of the contact point of the pippetes and the tip.[2]

Single-channel, multi-channel, electronic pipettes, and repeaters

Depending on the number of pistons in a pipette, there is a differentiation between single-channel pipettes and multi-channel pipettes. For manual high-throughput applications like filling up a 96-well microtiter plate most researchers prefer a multi-channel pipette. Instead of handling well by well, a row of 8 wells can be handled in parallel as this type of pipette has 8 pistons in parallel.

To improve the ergonomics of pipettes by reducing the necessary force, electronic pipettes were developed. The manual movement of the piston is replaced by a small electric motor powered by a battery. Whereas manual pipettes need a movement of the thumb (up to 3 cm), electronic pipettes have a main button. The programming of the pipette is generally done by a control wheel and some further buttons. All settings are displayed on a small display. Electronic pipettes can decrease the risk of RSI-type injuries.

Repeaters are specialized pipettes, optimized for repeated working steps like dispensing several times a specific volume like 20 µL from a single aspiration of a larger volume. In general, they have specific tips which do not fit on normal pipettes. Some electronic pipettes are able to perform this function using standard tips.

Locking mechanism

Some air-displacement pipettes can additionally feature a locking mechanism (referred to as "locking pipettes") to allow better changing of volume yet preserving accuracy. By locking the set volume while performing several identical pipetting actions, accidental changes to the pipette volume setting are avoided.

The lock mechanism is typically a mechanical toggle close to the pipette setting controls that interferes with the setting mechanism to prevent movement.

Accuracy

Certain considerations should be observed to ensure maximum accuracy and repeatability:

The importance of operator skill cannot be overstated. A high-quality, well-calibrated pipette in the hand of an uninterested or untrained operator is an unreliable instrument. Additionally, there are four factors that can reduce the accuracy and repeatability of even highly skilled operators, and these factors must be counteracted if optimal accuracy is to be achieved:

Calibration

A set of Gilson micropipettes

For sustained accuracy and consistent and repeatable operation, pipettes should be calibrated at periodic intervals. These intervals vary depending on several factors:

Under average conditions, most pipettes can be calibrated semi-annually (every six months) and provide satisfactory performance. Institutions that are regulated by the Food and Drug Administration's GMP/GLP regulations generally benefit from quarterly calibration, or every three months. Critical applications may require monthly service, while research and educational institutions may need only annual service. These are general guidelines and any decision on the appropriate calibration interval should be made carefully and include considerations of the pipette in question (some are more reliable than others), the conditions under which the pipette is used, and the operators who use it.

Calibration is generally accomplished through means of gravimetric analysis. This entails dispensing samples of distilled water into a receiving vessel perched atop a precision analytical balance. The density of water is a well-known constant, and thus the mass of the dispensed sample provides an accurate indication of the volume dispensed. Relative humidity, ambient temperature, and barometric pressure are factors in the accuracy of the measurement, and are usually combined in a complex formula and computed as the Z-factor. This Z-factor is then used to modify the raw mass data output of the balance and provide an adjusted and more accurate measurement.

The colormetric method uses precise concentrations of colored water to affect the measurement and determine the volume dispensed. A spectrophotomer is used to measure the color difference before and after aspiration of the sample, providing a very accurate reading. This method is more expensive than the more common gravimetric method, given the cost of the colored reagents, and is recommended when optimal accuracy is required. It is also recommended for extremely low-volume pipette calibration, in the 2 microliter range, because the inherent uncertainties of the gravimetic method, performed with standard laboratory balances, becomes excessive. Properly calibrated microbalances, capable of reading in the range of micrograms (10−6 g) can also be used effectively for gravimetric analysis of low-volume micropipettes, but only if environmental conditions are under strict control. Six-place balances and environmental controls dramatically increase the cost of such calibrations.

Sources

See also

References

  1. Zinnen, Tom (June 2004). "The Micropipette Story". The Board of Regents of the University of Wisconsin System. Archived from the original on 26 December 2009. Retrieved 14 December 2009.
  2. http://www.rainin.com/pdf/tr9901.pdf

External links