7,8-Dihydroxyflavone

7,8-Dihydroxyflavone
Systematic (IUPAC) name
7,8-Dihydroxy-2-phenyl-4H-chromen-4-one
Clinical data
Identifiers
38183-03-8
None
PubChem CID 1880
ChemSpider 1809
Chemical data
Formula C15H10O4
254.238 g/mol

7,8-Dihydroxyflavone (7,8-DHF) is a naturally-occurring flavone found in Godmania aesculifolia, Tridax procumbens, and primula tree leaves.[1][2][3] It has been found to act as a potent and selective small-molecule agonist of the TrkB receptor (Kd ≈ 320 nM), the main signaling receptor of brain-derived neurotrophic factor (BDNF),[4][5][6] and is both orally-bioavailable and able to penetrate the blood-brain-barrier,[7] though with a relatively short half-life (~9 min with 1 mg/kg oral administration in rats).[8]

7,8-DHF has demonstrated remarkable therapeutic efficacy in animal models of a variety of central nervous system disorders,[6] including depression,[7] Alzheimer's disease,[9][10][11] cognitive deficits in schizophrenia,[12] Parkinson's disease,[4] Huntington's disease,[13] amyotrophic lateral sclerosis,[14] traumatic brain injury,[15] cerebral ischemia,[16][17] fragile X syndrome,[18] and Rett syndrome.[19] 7,8-DHF also shows efficacy in animal models of age-associated cognitive impairment[20] and enhances memory consolidation and emotional learning in healthy rodents.[21][22] In addition, 7,8-DHF possesses powerful antioxidant activity independent of its actions on the TrkB receptor,[23] and protects against glutamate-induced excitotoxicity,[24] 6-hydroxydopamine-induced dopaminergic neurotoxicity,[25] and oxidative stress-induced genotoxicity.[26] It was also found to block methamphetamine-induced dopaminergic neurotoxicity, an effect which, in contrast to the preceding, was found to be TrkB-dependent.[27]

7,8-DHF has been found to act as a weak aromatase inhibitor in vitro (Ki = 10 μM),[28] though there is evidence to suggest that this might not be the case in vivo.[4] In addition, it has been found to inhibit aldehyde dehydrogenase and estrogen sulfotransferase in vitro (Ki = 35 μM and 1–3 μM, respectively), though similarly to the case of aromatase, these activities have not been confirmed in vivo.[4] Unlike many other flavonoids, 7,8-DHF does not show any inhibitory activity on 17β-hydroxysteroid dehydrogenase.[29] 7,8-DHF has also been observed to possess in vitro antiestrogenic effects at very high concentrations (Ki = 50 μM).[30][31]

See also

References

  1. Andero, R.; Ressler, K.J. (2012). "Fear extinction and BDNF: translating animal models of PTSD to the clinic". Genes, Brain and Behavior 11 (5): 503–512. doi:10.1111/j.1601-183X.2012.00801.x. ISSN 1601-1848.
  2. Colombo, Paola S.; Flamini, Guido; Christodoulou, Michael S.; Rodondi, Graziella; Vitalini, Sara; Passarella, Daniele; Fico, Gelsomina (2014). "Farinose alpine Primula species: Phytochemical and morphological investigations". Phytochemistry 98: 151–159. doi:10.1016/j.phytochem.2013.11.018. ISSN 0031-9422.
  3. Cell Press (2015). "Molecule found in tree leaves helps female mice combat weight gain; males unaffected" (HTML). ScienceDaily. Retrieved 2015-03-19.
  4. 4.0 4.1 4.2 4.3 Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y et al. (2010). "A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone". Proc. Natl. Acad. Sci. U.S.A. 107 (6): 2687–92. doi:10.1073/pnas.0913572107. PMC 2823863. PMID 20133810.
  5. Liu X, Obianyo O, Chan CB, Huang J, Xue S, Yang JJ et al. (2014). "Biochemical and biophysical investigation of the brain-derived neurotrophic factor mimetic 7,8-dihydroxyflavone in the binding and activation of the TrkB receptor". J. Biol. Chem. 289 (40): 27571–84. doi:10.1074/jbc.M114.562561. PMID 25143381.
  6. 6.0 6.1 Zeng Y, Wang X, Wang Q, Liu S, Hu X, McClintock SM (2013). "Small molecules activating TrkB receptor for treating a variety of CNS disorders". CNS Neurol Disord Drug Targets 12 (7): 1066–77. doi:10.2174/18715273113129990089. PMID 23844685.
  7. 7.0 7.1 Liu X, Chan CB, Jang SW, Pradoldej S, Huang J, He K et al. (2010). "A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect". J. Med. Chem. 53 (23): 8274–86. doi:10.1021/jm101206p. PMC 3150605. PMID 21073191.
  8. Liu X, Chan CB, Qi Q, Xiao G, Luo HR, He X et al. (2012). "Optimization of a small tropomyosin-related kinase B (TrkB) agonist 7,8-dihydroxyflavone active in mouse models of depression". J. Med. Chem. 55 (19): 8524–37. doi:10.1021/jm301099x. PMC 3491656. PMID 22984948.
  9. Castello NA, Nguyen MH, Tran JD, Cheng D, Green KN, LaFerla FM (2014). "7,8-Dihydroxyflavone, a small molecule TrkB agonist, improves spatial memory and increases thin spine density in a mouse model of Alzheimer disease-like neuronal loss". PLoS ONE 9 (3): e91453. doi:10.1371/journal.pone.0091453. PMC 3948846. PMID 24614170.
  10. Chen C, Li XH, Zhang S, Tu Y, Wang YM, Sun HT (2014). "7,8-dihydroxyflavone ameliorates scopolamine-induced Alzheimer-like pathologic dysfunction". Rejuvenation Res 17 (3): 249–54. doi:10.1089/rej.2013.1519. PMID 24325271.
  11. Zhang Z, Liu X, Schroeder JP, Chan CB, Song M, Yu SP et al. (2014). "7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer's disease". Neuropsychopharmacology 39 (3): 638–50. doi:10.1038/npp.2013.243. PMID 24022672.
  12. Yang YJ, Li YK, Wang W, Wan JG, Yu B, Wang MZ et al. (2014). "Small-molecule TrkB agonist 7,8-dihydroxyflavone reverses cognitive and synaptic plasticity deficits in a rat model of schizophrenia". Pharmacol. Biochem. Behav. 122: 30–6. doi:10.1016/j.pbb.2014.03.013. PMID 24662915.
  13. Jiang M, Peng Q, Liu X, Jin J, Hou Z, Zhang J et al. (2013). "Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington's disease". Hum. Mol. Genet. 22 (12): 2462–70. doi:10.1093/hmg/ddt098. PMC 3658168. PMID 23446639.
  14. Korkmaz OT, Aytan N, Carreras I, Choi JK, Kowall NW, Jenkins BG et al. (2014). "7,8-Dihydroxyflavone improves motor performance and enhances lower motor neuronal survival in a mouse model of amyotrophic lateral sclerosis". Neurosci. Lett. 566: 286–91. doi:10.1016/j.neulet.2014.02.058. PMID 24637017.
  15. Wu CH, Hung TH, Chen CC, Ke CH, Lee CY, Wang PY et al. (2014). "Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling". PLoS ONE 9 (11): e113397. doi:10.1371/journal.pone.0113397. PMC 4240709. PMID 25415296.
  16. Wang B, Wu N, Liang F, Zhang S, Ni W, Cao Y et al. (2014). "7,8-dihydroxyflavone, a small-molecule tropomyosin-related kinase B (TrkB) agonist, attenuates cerebral ischemia and reperfusion injury in rats". J. Mol. Histol. 45 (2): 129–40. doi:10.1007/s10735-013-9539-y. PMID 24045895.
  17. Uluc K, Kendigelen P, Fidan E, Zhang L, Chanana V, Kintner D et al. (2013). "TrkB receptor agonist 7, 8 dihydroxyflavone triggers profound gender- dependent neuroprotection in mice after perinatal hypoxia and ischemia". CNS Neurol Disord Drug Targets 12 (3): 360–70. doi:10.2174/18715273113129990061. PMC 3674109. PMID 23469848.
  18. Tian M, Zeng Y, Hu Y, Yuan X, Liu S, Li J et al. (2015). "7, 8-Dihydroxyflavone induces synapse expression of AMPA GluA1 and ameliorates cognitive and spine abnormalities in a mouse model of fragile X syndrome". Neuropharmacology 89: 43–53. doi:10.1016/j.neuropharm.2014.09.006. PMID 25229717.
  19. Johnson RA, Lam M, Punzo AM, Li H, Lin BR, Ye K et al. (2012). "7,8-dihydroxyflavone exhibits therapeutic efficacy in a mouse model of Rett syndrome". J. Appl. Physiol. 112 (5): 704–10. doi:10.1152/japplphysiol.01361.2011. PMC 3643819. PMID 22194327.
  20. Zeng Y, Lv F, Li L, Yu H, Dong M, Fu Q (2012). "7,8-dihydroxyflavone rescues spatial memory and synaptic plasticity in cognitively impaired aged rats". J. Neurochem. 122 (4): 800–11. doi:10.1111/j.1471-4159.2012.07830.x. PMID 22694088.
  21. Bollen E, Vanmierlo T, Akkerman S, Wouters C, Steinbusch HM, Prickaerts J (2013). "7,8-Dihydroxyflavone improves memory consolidation processes in rats and mice". Behav. Brain Res. 257: 8–12. doi:10.1016/j.bbr.2013.09.029. PMID 24070857.
  22. Andero R, Heldt SA, Ye K, Liu X, Armario A, Ressler KJ (2011). "Effect of 7,8-dihydroxyflavone, a small-molecule TrkB agonist, on emotional learning". Am J Psychiatry 168 (2): 163–72. doi:10.1176/appi.ajp.2010.10030326. PMC 3770732. PMID 21123312.
  23. Foti, Mario; Piattelli, Mario; Baratta, Maria Tiziana; Ruberto, Giuseppe (1996). "Flavonoids, Coumarins, and Cinnamic Acids as Antioxidants in a Micellar System. Structure−Activity Relationship†". Journal of Agricultural and Food Chemistry 44 (2): 497–501. doi:10.1021/jf950378u. ISSN 0021-8561.
  24. Chen J, Chua KW, Chua CC, Yu H, Pei A, Chua BH et al. (2011). "Antioxidant activity of 7,8-dihydroxyflavone provides neuroprotection against glutamate-induced toxicity". Neurosci. Lett. 499 (3): 181–5. doi:10.1016/j.neulet.2011.05.054. PMID 21651962.
  25. Han X, Zhu S, Wang B, Chen L, Li R, Yao W et al. (2014). "Antioxidant action of 7,8-dihydroxyflavone protects PC12 cells against 6-hydroxydopamine-induced cytotoxicity". Neurochem. Int. 64: 18–23. doi:10.1016/j.neuint.2013.10.018. PMID 24220540.
  26. Zhang R, Kang KA, Piao MJ, Ko DO, Wang ZH, Chang WY et al. (2009). "Preventive effect of 7,8-dihydroxyflavone against oxidative stress induced genotoxicity". Biol. Pharm. Bull. 32 (2): 166–71. doi:10.1248/bpb.32.166. PMID 19182370.
  27. Ren Q, Zhang JC, Ma M, Fujita Y, Wu J, Hashimoto K (2014). "7,8-Dihydroxyflavone, a TrkB agonist, attenuates behavioral abnormalities and neurotoxicity in mice after administration of methamphetamine". Psychopharmacology (Berl.) 231 (1): 159–66. doi:10.1007/s00213-013-3221-7. PMID 23934209.
  28. Kao YC, Zhou C, Sherman M, Laughton CA, Chen S (1998). "Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study". Environ. Health Perspect. 106 (2): 85–92. doi:10.1289/ehp.9810685. PMC 1533021. PMID 9435150.
  29. Le Bail, J.C; Laroche, T; Marre-Fournier, F; Habrioux, G (1998). "Aromatase and 17β-hydroxysteroid dehydrogenase inhibition by flavonoids". Cancer Letters 133 (1): 101–106. doi:10.1016/S0304-3835(98)00211-0. ISSN 0304-3835. PMID 9929167.
  30. Le Bail JC, Varnat F, Nicolas JC, Habrioux G (1998). "Estrogenic and antiproliferative activities on MCF-7 human breast cancer cells by flavonoids". Cancer Lett. 130 (1-2): 209–16. doi:10.1016/S0304-3835(98)00141-4. PMID 9751276.
  31. Pouget C, Lauthier F, Simon A, Fagnere C, Basly JP, Delage C et al. (2001). "Flavonoids: structural requirements for antiproliferative activity on breast cancer cells". Bioorg. Med. Chem. Lett. 11 (24): 3095–7. doi:10.1016/S0960-894X(01)00617-5. PMID 11720850.