6-demicube

Demihexeract
(6-demicube)

Petrie polygon projection
Type Uniform 6-polytope
Family demihypercube
Schläfli symbol {3,33,1} = h{4,34}
s{21,1,1,1,1}
Coxeter diagram =
Coxeter symbol 131
5-faces4412 {31,2,1}
32 {34}
4-faces25260 {31,1,1}
192 {33}
Cells640160 {31,0,1}
480 {3,3}
Faces640{3}
Edges240
Vertices32
Vertex figure Rectified 5-simplex
Symmetry group D6, [35,1,1] = [1+,4,34]
[25]+
Petrie polygon decagon
Properties convex

In geometry, a 6-demicube or demihexteract is a uniform 6-polytope, constructed from a 6-cube (hexeract) with alternated vertices truncated. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.

Coxeter named this polytope as 131 from its Coxeter diagram, with a ring on one of the 1-length branches, . It can named similarly by a 3-dimensional exponential Schläfli symbol, {3,33,1}.

Cartesian coordinates

Cartesian coordinates for the vertices of a demihexeract centered at the origin are alternate halves of the hexeract:

(±1,±1,±1,±1,±1,±1)

with an odd number of plus signs.

Images

orthographic projections
Coxeter plane B6
Graph
Dihedral symmetry [12/2]
Coxeter plane D6 D5
Graph
Dihedral symmetry [10] [8]
Coxeter plane D4 D3
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Related polytopes

There are 47 uniform polytopes with D6 symmetry, 31 are shared by the B6 symmetry, and 16 are unique:


h{4,34}

h2{4,34}

h3{4,34}

h4{4,34}

h5{4,34}

h2,3{4,34}

h2,4{4,34}

h2,5{4,34}

h3,4{4,34}

h3,5{4,34}

h4,5{4,34}

h2,3,4{4,34}

h2,3,5{4,34}

h2,4,5{4,34}

h3,4,5{4,34}

h2,3,4,5{4,34}

The 6-demicube, 131 is third in a dimensional series of uniform polytopes, expressed by Coxeter as k31 series. The fifth figure is a Euclidean honeycomb, 331, and the final is a noncompact hyperbolic honeycomb, 431. Each progressive uniform polytope is constructed from the previous as its vertex figure.

k31 dimensional figures
n 4 5 6 7 8 9
Coxeter
group
A3A1 A5 D6 E7 {\tilde{E}}_{7} = E7+ {\bar{T}}_8=E7++
Coxeter
diagram
Symmetry [3−1,3,1] [30,3,1] [31,3,1] [32,3,1] [33,3,1] [34,3,1]
Order 48 720 23,040 2,903,040
Graph - -
Name 131 031 131 231 331 431

It is also the second in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 13k series. The next figure is the Euclidean honeycomb 133 and the final is a noncompact hyperbolic honeycomb, 134.

13k dimensional figures
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8 9
Coxeter
group
A3A1 A5 D6 E7 {\tilde{E}}_{7}=E7+ {\bar{T}}_8=E7++
Coxeter
diagram
Symmetry [3−1,3,1] [30,3,1] [31,3,1] [32,3,1] [[3<sup>3,3,1</sup>]] [34,3,1]
Order 48 720 23,040 2,903,040
Graph - -
Name 13,-1 130 131 132 133 134

References

External links