Zariski's lemma
In algebra, Zariski's lemma, introduced by Oscar Zariski, states that if K is a finitely generated algebra over a field k and if K is a field, then K is a finite field extension of k.
An important application of the lemma is a proof of the weak form of Hilbert's nullstellensatz:[1] if I is a proper ideal of (k algebraically closed field), then I has a zero; i.e., there is a point x in such that for all f in I.[2]
The lemma may also be understood from the following perspective. In general, a ring R is a Jacobson ring if and only if every finitely generated R-algebra that is a field is finite over R.[3] Thus, the lemma follows from the fact that a field is a Jacobson ring.
Proof
Two direct proofs, one of which is due to Zariski, are given in Atiyah–MacDonald.[4][5] The lemma is also a consequence of the Noether normalization lemma. Indeed, by the normalization lemma, K is a finite module over the polynomial ring where are algebraically independent over k. But since K has Krull dimension zero, the polynomial ring must have dimension zero; i.e., .
In fact, the lemma is a special case of the general formula for a finitely generated k-algebra A that is an integral domain, which is also a consequence of the normalization lemma.
Notes
References
- M. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra, Addison–Wesley, 1994. ISBN 0-201-40751-5
- James Milne, Algebraic Geometry