Wine chemistry
From Wikipedia, the free encyclopedia
Wine is a complex mixture of chemical compounds in a hydro-alcoholic solution with a pH around 3.
Types of natural molecules present in wine
- Acids in wine
- Phenolic compounds in wine
- Proteins in wine
- Sugars in wine
- Yeast assimilable nitrogen
- Minerals
- Dissolved gas (CO2)
Volatiles
Main article: Aroma of wine
- Methoxypyrazines
- Esters : Ethyl acetate is the most common ester in wine, being the product of the most common volatile organic acid — acetic acid, and the ethyl alcohol generated during the fermentation.
- Norisoprenoids, such as C13-norisoprenoids found in grape (Vitis vinifera)[1] or wine,[2] can be produced by fungal peroxidases[3] or glycosidases.[4]
Other molecules found in wine
Conservatives
- Ascorbic acid is used during wine making
- Sulfur dioxide (SO2), a preservative often added to wine
Fining agents
Gum arabic has been used in the past as fining agent.[5]
Others
- Melatonin[6]
- Wine lactone
- Anthocyanone A, a degradation product of malvidin under acidic conditions
Wine faults
Main article: Wine fault
4-Ethylphenol is produced from the precursor p-coumaric acid. Brettanomyces converts this to 4-vinylphenol via the enzyme cinnamate decarboxylase.[7] 4-Vinylphenol is further reduced to 4-ethylphenol by the enzyme vinyl phenol reductase. Coumaric acid is sometimes added to microbiological media, enabling the positive identification of Brettanomyces by smell.
Geraniol is a by-product of the metabolism of sorbate and, thus, is a very unpleasant contaminant of wine if bacteria are allowed to grow in wine.
See also
Notes
- ↑ Günata, Ziya; Wirth, Jérémie L.; Guo, Wenfei; Baumes, Raymond L. (2001). "C13-Norisoprenoid Aglycon Composition of Leaves and Grape Berries from Muscat of Alexandria and Shiraz Cultivars". Carotenoid-Derived Aroma Compounds. ACS Symposium Series 802. p. 255. doi:10.1021/bk-2002-0802.ch018. ISBN 0-8412-3729-8.
- ↑ P. Winterhalter, M. A. Sefton and P. J. Williams (1990). "Volatile C13-Norisoprenoid Compounds in Riesling Wine Are Generated From Multiple Precursors". Am. J. Enol. Vitic 41 (4): 277–283.
- ↑ Zelena, Kateryna; Hardebusch, Björn; Hülsdau, BäRbel; Berger, Ralf G.; Zorn, Holger (2009). "Generation of Norisoprenoid Flavors from Carotenoids by Fungal Peroxidases". Journal of Agricultural and Food Chemistry 57 (21): 9951–5. doi:10.1021/jf901438m. PMID 19817422.
- ↑ Cabaroglu, Turgut; Selli, Serkan; Canbas, Ahmet; Lepoutre, Jean-Paul; Günata, Ziya (2003). "Wine flavor enhancement through the use of exogenous fungal glycosidases". Enzyme and Microbial Technology 33 (5): 581. doi:10.1016/S0141-0229(03)00179-0.
- ↑ Vivas N, Vivas de Gaulejac N, Nonier M.F and Nedjma M (2001). "Incidence de la gomme arabique sur l'astringence des vins et leurs stabilites colloidales" [Effect of gum arabic on wine astringency and colloidal stability]. Progres Agricole et Viticole (in French) 118 (8): 175–176.
- ↑ Lamont, Kim T.; Somers, Sarin; Lacerda, Lydia; Opie, Lionel H.; Lecour, Sandrine (2011). "Is red wine a SAFE sip away from cardioprotection? Mechanisms involved in resveratrol- and melatonin-induced cardioprotection". Journal of Pineal Research 50 (4): 374–80. doi:10.1111/j.1600-079X.2010.00853.x. PMID 21342247.
- ↑ Brettanomyces Monitoring by Analysis of 4-ethylphenol and 4-ethylguaiacol at etslabs.com
References
- Comprehensive Natural Products II — Chemistry and Biology, chapter 3.26 – Chemistry of Wine, volume 3, pages 1119–1172. Véronique Cheynier, Rémi Schneider, Jean-Michel Salmon and Hélène Fulcrand, doi:10.1016/B978-008045382-8.00088-5
External links
- Wine Chemistry and Biochemistry. by M. Victoria Moreno-Arribas,Carmen Polo and María Carmen Polo, on Google books
- Mass Spectrometry in Grape and Wine Chemistry. by Riccardo Flamini and Pietro Traldi, on Google books
|
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.