Whittaker function

From Wikipedia, the free encyclopedia

In mathematics, a Whittaker function is a special solution of Whittaker's equation, a modified form of the confluent hypergeometric equation introduced by Whittaker (1904) to make the formulas involving the solutions more symmetric. More generally, Jacquet (1966, 1967) introduced Whittaker functions of reductive groups over local fields, where the functions studied by Whittaker are essentially the case where the local field is the real numbers and the group is SL2(R).

Whittaker's equation is

{\frac  {d^{2}w}{dz^{2}}}+\left(-{\frac  {1}{4}}+{\frac  {\kappa }{z}}+{\frac  {1/4-\mu ^{2}}{z^{2}}}\right)w=0.

It has a regular singular point at 0 and an irregular singular point at ∞. Two solutions are given by the Whittaker functions Mκ,μ(z), Wκ,μ(z), defined in terms of Kummer's confluent hypergeometric functions M and U by

M_{{\kappa ,\mu }}\left(z\right)=\exp \left(-z/2\right)z^{{\mu +{\tfrac  {1}{2}}}}M\left(\mu -\kappa +{\frac  {1}{2}},1+2\mu ;z\right)
W_{{\kappa ,\mu }}\left(z\right)=\exp \left(-z/2\right)z^{{\mu +{\tfrac  {1}{2}}}}U\left(\mu -\kappa +{\frac  {1}{2}},1+2\mu ;z\right)

Whittaker functions appear as coefficients of certain representations of the group SL2(R), called Whittaker models.

References

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.