Weibel instability
The Weibel instability is a plasma instability present in homogeneous or nearly homogeneous electromagnetic plasmas which possess an anisotropy in momentum (velocity) space. This anisotropy is most generally understood as two temperatures in different directions. Burton Fried showed that this instability can be understood more simply as the superposition of many counter-streaming beams. In this sense, it is like the two-stream instability except that the perturbations are electromagnetic and result in filamentation as opposed to electrostatic perturbations which would result in charge bunching. In the linear limit the instability causes exponential growth of electromagnetic fields in the plasma which help restore momentum space isotropy. In very extreme cases, the Weibel instability is related to one- or two-dimensional stream instabilities.
Consider an electron-ion plasma in which the ions are fixed and the electrons are hotter in the y-direction than in x or z-direction.
To see how magnetic field perturbation would grow, suppose a field B = B cos kx spontaneously arises from noise. The Lorentz force then bends the electron trajectories with the result that upward-moving-ev x B electrons congregate at B and downward-moving ones at A. The resulting current j = -en ve sheets generate magnetic field that enhances the original field and thus perturbation grows.
References
- E.S. Weibel, Phys. Rev. Lett. 2, 83 (1959); Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution
- B.D. Fried, Phys. Fluids 2, 337 (1959); Mechanism for Instability of Transverse Plasma Waves
See also
- Chromo-Weibel Instability