Wagner's theorem
In graph theory, Wagner's theorem is a mathematical forbidden graph characterization of planar graphs, named after Klaus Wagner, stating that a finite graph is planar if and only if its minors include neither K5 (the complete graph on five vertices) nor K3,3 (the utility graph, a complete bipartite graph on six vertices). Another result also sometimes known as Wagner's theorem states that a four-connected graph is planar if and only if it has no K5 minor. That is, by assuming a higher level of connectivity, the other graph K3,3 can be made unnecessary in the characterization. Using this fact, it is possible to decompose the graphs that do not have a K5 minor into combinations of planar graphs and the eight-vertex Wagner graph, glued together by clique-sum operations.
Wagner published both theorems in 1937,[1] subsequent to the 1930 publication of Kuratowski's theorem,[2] according to which a graph is planar if and only if it does not contain as a subgraph a subdivision of one of the same two forbidden graphs K5 and K3,3. In a sense, Kuratowski's theorem is stronger than Wagner's theorem: a subdivision can be converted into a minor of the same type by contracting all but one edge in each path formed by the subdivision process, but converting a minor into a subdivision of the same type is not always possible. However, in the case of the two graphs K5 and K3,3, it is straightforward to prove that a graph that has at least one of these two graphs as a minor also has at least one of them as a subdivision, so the two theorems are equivalent.[3]
Wagner's theorem is an important precursor to the theory of graph minors, which culminated in the proofs of two deep and far-reaching results: the graph structure theorem (a generalization of Wagner's clique-sum decomposition of K5-minor-free graphs)[4] and the Robertson–Seymour theorem (a generalization of the forbidden minor characterization of planar graphs, stating that every graph family closed under the operation of taking minors has a characterization by a finite number of forbidden minors).[5] Analogues of Wagner's theorem can also be extended to the theory of matroids: in particular, the same two graphs K5 and K3,3 (along with three other forbidden configurations) appear in a characterization of the graphic matroids by forbidden matroid minors.[6]
References
- ↑ Wagner, K. (1937), "Über eine Eigenschaft der ebenen Komplexe", Math. Ann. 114: 570–590, doi:10.1007/BF01594196.
- ↑ Kuratowski, Kazimierz (1930), "Sur le problème des courbes gauches en topologie", Fund. Math. (in French) 15: 271–283.
- ↑ Bondy, J. A.; Murty, U.S.R. (2008), Graph Theory, Graduate Texts in Mathematics 244, Springer, p. 269, ISBN 9781846289699.
- ↑ Lovász, László (2006), "Graph minor theory", Bulletin of the American Mathematical Society 43 (1): 75–86, doi:10.1090/S0273-0979-05-01088-8, MR 2188176.
- ↑ Chartrand, Gary; Lesniak, Linda; Zhang, Ping (2010), Graphs & Digraphs (5th ed.), CRC Press, p. 307, ISBN 9781439826270.
- ↑ Seymour, P. D. (1980), "On Tutte's characterization of graphic matroids", Annals of Discrete Mathematics 8: 83–90, doi:10.1016/S0167-5060(08)70855-0, MR 597159.