Variable renewable energy

From Wikipedia, the free encyclopedia
Output of five Ontario wind farms over a five-day period in January.
Daily solar output in Barstow, California on selected days; a sunny day in summer, an inclement day in the fall, and on a sunny day in the winter.

Variable renewable energy (VRE) is a renewable energy source that is non-dispatchable due to its variable nature, like wind power and solar power, as opposed to a controllable renewable energy source such as hydroelectricity, or biomass, or a relatively constant source such as geothermal power or run-of-the-river hydroelectricity. Biomass is a fuel type energy source, geothermal and hydroelectricity are "fuel is free" energy sources like wind and solar. With a fuel type energy source you pay incrementally for the fuel consumed - your only cost to obtain biomass in the form of firewood might be a stove and an ax, but you pay labor cost to obtain the firewood. With geothermal or hydroelectricity you pay once to create the power plant, and for as long as it lasts obtain energy for free - or at almost no cost.

There is plenty of energy available from wind and solar - there is enough solar energy reaching the Earth each hour to supply all of our needs for an entire year, but it is not always available when it is needed or where it is needed, requiring grid operators to choose between storage and transmission to meet consumer demand. The difficulty of integrating a non-dispatchable energy source into the electric grid creates scheduling difficulties for grid operators that do not occur with dispatchable energy sources such as coal, oil, natural gas, and nuclear, requiring a "paradigm shift" in how grids are operated.

Comparison

Resource Dispatchability Variability Predictability
Biofuel High Low High
Biomass High Low High
Geothermal Low Low High
Hydroelectricity High Low High
Solar power Low Very high Medium
Tidal power Low Very high Very high
Wave power Low Medium Medium
Wind power Low High Low
[citation needed]

Biomass and geothermal are both completely dispatchable; wind and solar production can be decreased, but not increased other than what nature provides. Between wind and solar, solar is more variable than wind and more predictable than wind. Biofuel and biomass involve a two step process in the production of energy - the production of fuel and the use of that fuel to create energy. For example wood needs to be cut to create firewood, and not only can be stored, but needs to be stored to dry adequately. Biofuel is created in one step, and is stored and then burned to create energy. In the combined power plant used by the University of Kassel to simulate using 100% renewable energy, wind farms and solar farms were supplemented as needed by hydrostorage and biomass to minute by minute follow the total electricity demand.[1]

Wind power

Day ahead prediction and actual wind power

Wind power is the least predictable of all of the Variable Renewable Energy sources. Grid operators use day ahead forecasting to determine which of the available power sources to use the next day, and weather forecasting is used to predict the likely wind power and solar power output available. The correlation between wind output and prediction can be relatively high, with an average uncorrected error of 8.8% in Germany over a two-year period.[2]

Wave power

Waves are primarily created by wind, so the power available from waves tends to follow that available from wind, but due to the mass of the water is less variable than wind power. Wind power is proportional to the cube of the wind speed, while wave power is proportional to the square of the wave height.[3][4]

Solar power

Daily solar output at AT&T Park in San Francisco

Solar power is more predictable than wind power and more variable - there is never any solar power available during the night, and the only unknown factor in predicting solar output each day is cloud cover. Many days in a row in some locations are relatively cloud free, just as many days in a row in either the same or other locations are overcast - leading to relatively high predictability. Almost all of our energy comes from the Sun. The exceptions being tidal, nuclear and geothermal power. Wind comes from the uneven heating of the earth's surface,[5] and can provide about 1% of the energy that is available from solar power. 86,000 TW of solar energy reaches the surface of the world vs. 870 TW in all of the world's winds.[6] Total world demand is roughly 12 TW, many times less than the amount that could be generated from wind and solar resources. From 40 to 85 TW could be provided from wind and about 580 TW from solar.[7]

Tidal power

Types of tide

Tidal power is the most predictable of all the Variable Renewable Energy sources. Twice a day the tides come and go at close to the same level each day. It is estimated that Britain could obtain 20% of energy from tidal power, but there are only approximately 20 locations world wide where tidal power stations are practical.[8]

Matching demand

Historically grid operators use day ahead forecasting to choose which power stations to make up demand each hour of the next day, and adjust this forecast at intervals as short as hourly or even every fifteen minutes to accommodate any changes. Normally as much as 100% demand is retained as spinning reserve that can be integrated quickly into the grid to make up for any power station failures or unexpected demand increases.[9]

A paradigm shift is needed when almost all of your energy comes from non-dispatchable sources - you have no control over how much wind or solar power will be available and your job instead of turning on and off available sources becomes one of either storing or transmission of those sources to when they can be used or to where they can be used. Some excess available energy can be diverted to hydrogen production for use in ships and airplanes, a relatively long term energy storage, in a world where almost all of our energy comes from wind, water, and solar (WWS). Hydrogen is not an energy source, but is a storage medium. A cost analysis will need to be made between long distance transmission and excess capacity. The sun is always shining somewhere, and the wind is always blowing somewhere on the Earth, but is it cost effective to bring solar power from Australia to New York?[7][10]

If excess capacity is created, the cost is increased because not all of the available output is used. For example, ERCOT predicts that 8.7% of nameplate capacity will be reliably available in summer[11] - so if Texas, which has a peak summer demand of 68,379 MW[12] built wind farms of 786,000 MW (68,379/0.087), they would generate, at a 35% capacity factor,[13] 2.4 million MWh per year - four times use, but might be sufficient to meet summer peaks. In practice it is likely that there are times with almost no wind in the entire region, making this not a practical solution. There were 54 days in 2002 when there was little wind power available in Denmark.[14] The estimated wind power installed capacity potential for Texas, using 100 meter wind turbines at 35% capacity factor, is 1,757,355.6 MW.[15] In locations like British Columbia, with abundant water power resources, water power can always make up any shortfall in wind power.[16]

Wind and solar are somewhat complementary. A comparison of the output of the solar panels and the wind turbine at the Massachusetts Maritime Academy shows the effect.[17] In winter there tends to be more wind and less solar, and in summer more solar and less wind, and during the day more solar and less wind. There is always no solar at night, and there is often more wind at night than during the day, so solar can be used somewhat to fill in the peak demand in the day, and wind can supply much of the demand during the night. There is however a substantial need for storage and transmission to fill in the gaps between demand and supply.

Variability and reliability

Mark A. Delucchi and Mark Z. Jacobson identify seven ways to design and operate variable renewable energy systems so that they will reliably satisfy electricity demand:[18]

  • (A) interconnect geographically dispersed, naturally variable energy sources (e.g., wind, solar, wave, tidal), which smoothes out electricity supply (and demand) significantly.
  • (B) use complementary and non-variable energy sources (such as hydroelectric power) to fill temporary gaps between demand and wind or solar generation.
  • (C) use “smart” demand-response management to shift flexible loads to a time when more renewable energy is available.
  • (D) store electric power, at the site of generation, (in batteries, hydrogen gas, molten salts, compressed air, pumped hydroelectric power, and flywheels), for later use.
  • (E) over-size renewable peak generation capacity to minimize the times when available renewable power is less than demand and to provide spare power to produce hydrogen for flexible transportation and heat uses.
  • (F) store electric power in electric-vehicle batteries, known as "vehicle to grid" or V2G.
  • (G) forecast the weather (winds, sunlight, waves, tides and precipitation) to better plan for energy supply needs.[18]

Jacobson and Delucchi say that wind, water and solar power can be scaled up in cost-effective ways to meet our energy demands, freeing us from dependence on both fossil fuels and nuclear power. In 2009 they published “A Plan to Power 100 Percent of the Planet With Renewables” in Scientific American. A more detailed and updated technical analysis has been published as a two-part article in the refereed journal Energy Policy.[19]

Renewable energy is naturally replenished and renewable power technologies increase energy security because they reduce dependence on foreign sources of fuel. Unlike power stations relying on uranium and recycled plutonium for fuel, they are not subject to the volatility of global fuel markets.[20] Renewable power decentralises electricity supply and so minimises the need to produce, transport and store hazardous fuels; reliability of power generation is improved by producing power close to the energy consumer. An accidental or intentional outage affects a smaller amount of capacity than an outage at a larger power station.[20]

See also

References

  1. "The Combined Power Plant: the first stage in providing 100% power from renewable energy". SolarServer. January 2008. Retrieved 10 October 2008. 
  2. On-line Monitoring and Prediction of Wind Power
  3. Wind and Waves
  4. Comparing the Variability of Wind Speed and Wave Height Data
  5. Wind Turbines: Converting Wind Energy Into Electricity
  6. Global Exergy Flux
  7. 7.0 7.1 Jacobson, Mark Z.; Delucchi, M.A. (November 2009). "A Path to Sustainable Energy by 2030" (PDF). Scientific American 301 (5): 58–65. doi:10.1038/scientificamerican1109-58. PMID 19873905. 
  8. Tidal power
  9. What is spinning reserve?
  10. Mark Z. Jacobson and Mark A. Delucchi (30 December 2010). "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials". Energy Policy. Elsevier Ltd. 
  11. ERCOT
  12. ERCOT breaks peak demand record third time
  13. Wind Power on the Community Scale
  14. "Why wind power works for Denmark" (PDF). Civil Engineering. May 2005. Retrieved 12 May 2012. 
  15. Estimated Wind Energy Potential
  16. The Wind Blows For Free
  17. Live data is available comparing solar and wind generation hourly since the day before yesterday, daily for last week and last month, and monthly for the last year
  18. 18.0 18.1 Delucchi, Mark A. and Mark Z. Jacobson (2010). "Providing all Global Energy with Wind, Water, and Solar Power, Part II: Reliability, System and Transmission Costs, and Policies". Energy policy. 
  19. Nancy Folbre (28 March 2011). "Renewing Support for Renewables". New York Times. 
  20. 20.0 20.1 Benjamin K. Sovacool. A Critical Evaluation of Nuclear Power and Renewable Electricity in Asia, Journal of Contemporary Asia, Vol. 40, No. 3, August 2010, p. 387.
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.