Tubal reversal

From Wikipedia, the free encyclopedia
Tubal reversal
Intervention
ICD-9-CM 66.7

Tubal reversal, also called tubal sterilization reversal or tubal ligation reversal, is a surgical procedure that attempts to restore fertility to women after a tubal ligation. By rejoining the separated segments of fallopian tube, tubal reversal may give women the chance to become pregnant again.

Tubal anatomy

The fallopian tube is a muscular organ extending from the uterus and ending next to the ovary. The tube is attached to the ovary by a small ligament. The inner tubal lining is rich in cilia. These are microscopic hair-like projections that beat in waves that help move the egg or ovum to the uterus in conjunction with muscular contractions of the tube.The fallopian tube is normally about 10 cm (4 inches) long and consists of several segments. Starting from the uterus and proceeding outward, these are the:

  • Interstitial segment - extends from the uterine cavity through the uterine muscle
  • Isthmic segment - narrow muscular portion adjacent to the uterus
  • Ampullary segment - wider and longer middle part of the tube
  • Infundibular segment - funnel shaped segment next to the fimbrial end
  • Fimbrial segment - wide opening at the end of the tube facing the ovary

Tubal reversal surgeries

Tubal reversal surgeries utilize the techniques of microsurgery to open and reconnect the fallopian tube segments that remain after a tubal sterilization.[1][2]

Tubotubal anastomosis

Following a tubal ligation, there are usually two remaining fallopian tube segments - the proximal tubal segment that emerges from the uterus and the distal tubal segment that ends with the fimbria next to the ovary. After opening the blocked ends of the remaining tubal segments, a narrow flexible stent is gently threaded through their inner cavities or lumens and into the uterine cavity. This ensures that the fallopian tube is open from the uterine cavity to its fimbrial end. The newly created tubal openings are then drawn next to each other by placing a retention suture in the connective tissue that lies beneath the fallopian tubes (mesosalpinx). The retention suture avoids the likelihood of the tubal segments subsequently pulling apart. Microsurgical sutures are used to precisely align the muscular portion (muscularis externa) and outer layer (serosa), while avoiding the inner layer (mucosa) of the fallopian tube. The tubal stent is then gently withdrawn from the fimbrial end of the tube.

Tubouterine implantation

In a small percentage of cases, a tubal ligation procedure leaves only the distal portion of the fallopian tube and no proximal tubal segment. This may occur when monopolar tubal coagulation has been applied to the isthmic segment of the fallopian tube as it emerges from the uterus. In this situation, a new opening can be created through the uterine muscle and the remaining tubal segment inserted into the uterine cavity. This microsurgical procedure is called tubouterine implantation.

Ampullary salpingostomy

Fimbriectomy is an uncommon type of tubal ligation that is performed by removing the fimbrial portion of the fallopian tube next to the ovary, leaving the tubal segment attached to the uterus. After fimbriectomy, the remaining tubal segment can be opened by the technique ampullary salpingostomy. A microsurgical electrode is used to open the tubal end and expose the internal lining. When the opening has been enlarged sufficiently and the internal lining or endothelium has extruded from the tubal end, sutures are placed to keep the endothelium folded outward over the edge and to prevent the tube from closing again.

Mini-laparotomy tubal reversal

Mini-laparotomy for tubal reversal surgery involves making a small incision in the abdominal wall just above the pubic bone after shaving the hair with a sterile hair clipper. The size and location of the incision as well as the plastic surgery techniques used to close it make the hair-line scar invisible when it has healed. Atraumatic surgical techniques involve the use of local anesthesia at the incision site and other tissues operated upon. This makes the surgery comfortable and minimizes post-operative pain. As opposed to standard operative methods, avoiding the use of surgical retractors and packs, constantly irrigating tissues to keep them moist and at body temperature, and operating under magnification throughout the procedure results in very rapid patient recovery. Operating with microsurgical instruments allows precision in suturing of the tubal segments.

Laparoscopic tubal reversal

Laparoscopic Tubal Reversal is a minimally-invasive surgical procedure (laparoscopy), using small, specially-designed instruments to repair and reconnect the fallopian tubes.

After general anesthesia has been administered, a 10mm (less than ½-inch) tube (trocar) is inserted just at the lower edge of the navel, and a special gas is pumped into the abdomen to create enough space to perform the operation safely and precisely. The laparoscope (a telescope), attached to a camera, is brought into the abdomen through the same tube, and the pelvis and abdomen are thoroughly inspected. The fallopian tubes are evaluated and the obstruction (ligation, burn, ring, or clip) is examined. Three small instruments (5mm each, less than ¼-inch) are used to remove the occlusion and prepare the two segments of the tube to be reconnected.

Once the connection (anastomosis) is completed, a blue dye is injected through the cervix, traveling through the uterus and tubes, all the way to the abdomen. This is to make sure the tubes have been aligned properly and that the connection is working well.

Patients are seen between 5–7 days after the operation to look at the small incisions and remove any stitches if necessary. Most of the time, the few stitches that were placed will be under the skin and will be absorbed by the body, without need for removal.

Patients should wait two to three months prior to attempting pregnancy in order to give the tubes a chance to heal completely. Trying to conceive before could result in an increased risk of ectopic pregnancy (pregnancy inside the fallopian tube instead of in the uterus).

When performed by a trained laparoscopic tubal reversal surgeon, laparoscopic tubal reversal combines the success rates of micro-surgical techniques with the advantages of minimally-invasive surgery – namely faster recovery, better healing, less pain, fewer complications, and no large disfiguring scars.[3]

Robotic assisted tubal reversal

Robotic assisted tubal reversal surgery is a surgical procedure in which the fallopian tubes are repaired by a surgeon using a remotely controlled, robotic surgical system.

The robotic system involves two components: a patient side-cart (also referred to as the robot) and a surgeon's console. The robot is placed adjacent to the patient and has several attached arms. Each arm has a unique surgical instrument and performs a specialized surgical function. The surgeon sits near the patient at the surgeon's console and visualizes the surgery through a monitor. The surgeon performs the entire reversal surgery using controllers located inside the surgeon's console.

Robotic surgery experts have suggested robotic tubal ligation reversal offers the advantage of smaller incisions when compared to traditional laparotomy tubal reversal surgery. These smaller incisions have been reported to result in less pain and quicker return to work after robotic tubal reversal when compared to traditional tubal ligation reversal using larger abdominal incisions. Robotic experts have also suggested the robotic system offers a greater range of motion and more surgical dexterity than a surgeon can obtain during laparoscopic tubal ligation reversal. The potential disadvantages to robotic surgery are longer operating times and higher costs.

A retrospective, Cleveland Clinic study compared 26 patients who underwent robotic assisted tubal reversal to 41 patients who underwent outpatient mini-laparotomy (abdominal incision) tubal reversal. Robotic tubal reversal patients, when compared to abdominal tubal reversal surgery patients, had longer times under anesthesia (283 minutes vs 205 minutes) and longer times in surgery (229 minutes vs 181 minutes). On average, robotic tubal reversal patients returned to work one week sooner than abdominal tubal reversal patients and the robotic tubal reversal surgeries were also more expensive than abdominal tubal reversal surgeries.[4]

An Ohio State University study evaluating robotic tubal reversal vs abdominal tubal reversal discovered similar findings but also evaluated pregnancy outcomes. Robotic tubal reversal surgery, when compared to abdominal tubal reversal surgery, had longer operative times (201 minutes vs 155 minutes), shorter hospital stays (4 hours compared to 34 hours), and quicker return to activities of daily living. Pregnancy outcomes of robotic tubal reversal surgery patients were also compared to pregnancy outcome of abdominal incision tubal reversal patients. Approximately 65% of the robotic tubal reversal surgery patients became pregnant compared with 50% of the abdominal incision patients. Of the pregnancies, 6 abnormal pregnancies were in the robotic tubal reversal patients (4 ectopic and 2 miscarriage) and 2 were in the abdominal incision patients (1 ectopic and 1 miscarriage). Both surgeries were expensive and were found to cost in excess of $92,000. Robotic tubal reversal surgery was slightly more costly than the abdominal incision tubal reversal.[5]

Essure sterilization reversal

Essure sterilization is a tubal occlusion procedure that was approved by the FDA in 2002. The Essure procedure involves inserting a small camera (hysteroscope) through the cervix and into the uterine cavity. Two small, metallic coils are then inserted into each tubal ostia and into the isthmic portion of the fallopian tube. The coils cause the isthmic portion of the fallopian tube to be blocked with scar tissue. To confirm tubal closure, a hysterosalpingogram should be performed three months after the Essure procedure. If either fallopian tube is open after the Essure procedure, then the Essure procedure can be repeated or another type of tubal occlusion method can be performed.

Reversal of Essure sterilization requires the blocked isthmic portion of the tube be bypassed by tubouterine implantation as described above.

Adiana sterilization reversal

Adiana sterilization was approved by the FDA in 2009. Adiana sterilization is a hysteroscopic tubal occlusion procedure, which is very similar to Essure sterilization. The Adiana procedure involves inserting a small camera (hysteroscope) through the cervix and into the uterine cavity. A smaller catheter is inserted into the tubal ostia. The catheter emits radiowaves (microwaves). The radiowaves cause injury to the tubal lining and will result in the tube gradually closing. Prior to removal of the catheter a small silicone stent is left inside the isthmic portion of the tube and this promotes tubal closure by the acceleration of the tubal scarring.

Reversal of Adiana is similar to reversal of Essure sterilization.

Hologic Corporation discontinued the procedure in March 2012, resolving ongoing litigation with Conceptus concerning patent infringement claims.[6]

Tubal reversal success rates

Tubal reversal success rates vary widely depending upon many factors.[7] These include the women's ages, methods of tubal ligation that they had performed, experience of the surgeon and techniques for repairing the tubes, length of follow-up after reversal surgery among other factors.

References

  1. Zarei A, Al-Ghafri W, Tulandi T. Tubal surgery. Clin Obstet Gynecol. 2009. PMID 19661750
  2. Deffieux X, Morin Surroca M, Faivre E, Pages F, Fernandez H, Gervaise A. Tubal anastomosis after tubal sterilization: a review. Arch Gynecol Obstet. 2001 PMID 21331539
  3. Rotman C., Rana N., Song J., Sueldo C. Chapter - Laparoscopic Tubal Anastomosis. Infertility and Assisted Reproduction. Cambridge University Press. 2008.
  4. Rodgers AK, Goldberg JM, Hammel JP, Falcone T. Tubal Anastomosis By Robotic Compared With Outpatient Minilaparotomy. Obstet Gynecol. 2007 Jun;109(6):1375-80. PMID 17540810
  5. Dharia Patel SP, Steinkampf MP, Whitten SJ, Malizia BA. Robotic Tubal Anastomosis: Surgical Technique and Cost Effectiveness. Fertil Steril. 2008 Oct;90(4):1175-9. PMID 18054354
  6. http://investors.hologic.com/index.php?s=43&item=447
  7. Gomel V, McComb PF. Microsurgery for tubal infertility. J Reprod Med. 2006 PMID 16674012
    This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.