Truncated 6-simplexes

From Wikipedia, the free encyclopedia

6-simplex

Truncated 6-simplex

Bitruncated 6-simplex

Tritruncated 6-simplex
Orthogonal projections in A7 Coxeter plane

In six-dimensional geometry, a truncated 6-simplex is a convex uniform 6-polytope, being a truncation of the regular 6-simplex.

There are unique 3 degrees of truncation. Vertices of the truncation 6-simplex are located as pairs on the edge of the 6-simplex. Vertices of the bitruncated 6-simplex are located on the triangular faces of the 6-simplex. Vertices of the tritruncated 6-simplex are located inside the tetrahedral cells of the 6-simplex.

Truncated 6-simplex

Truncated 6-simplex
Typeuniform polypeton
Schläfli symbol t{3,3,3,3,3}
Coxeter-Dynkin diagram
5-faces14:
7 {3,3,3,3}
7 t{3,3,3,3}
4-faces63:
42 {3,3,3}
21 t{3,3,3}
Cells140:
105 {3,3}
35 t{3,3}
Faces175:
140 {3}
35 {6}
Edges126
Vertices42
Vertex figureElongated 5-cell pyramid
Coxeter groupA6, [35], order 5040
Dual?
Propertiesconvex

Alternate names

  • Truncated heptapeton (Acronym: til) (Jonathan Bowers)[1]

Coordinates

The vertices of the truncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,0,0,1,2). This construction is based on facets of the truncated 7-orthoplex.

Images

orthographic projections
Ak Coxeter plane A6 A5 A4
Graph
Dihedral symmetry [7] [6] [5]
Ak Coxeter plane A3 A2
Graph
Dihedral symmetry [4] [3]

Bitruncated 6-simplex

Bitruncated 6-simplex
Typeuniform polypeton
Schläfli symbol 2t{3,3,3,3,3}
Coxeter-Dynkin diagram
5-faces14
4-faces84
Cells245
Faces385
Edges315
Vertices105
Vertex figure
Coxeter groupA6, [35], order 5040
Propertiesconvex

Alternate names

  • Bitruncated heptapeton (Acronym: batal) (Jonathan Bowers)[2]

Coordinates

The vertices of the bitruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,0,1,2,2). This construction is based on facets of the bitruncated 7-orthoplex.

Images

orthographic projections
Ak Coxeter plane A6 A5 A4
Graph
Dihedral symmetry [7] [6] [5]
Ak Coxeter plane A3 A2
Graph
Dihedral symmetry [4] [3]

Tritruncated 6-simplex

Tritruncated 6-simplex
Typeuniform polypeton
Schläfli symbol 3t{3,3,3,3,3}
Coxeter-Dynkin diagram
or
5-faces14 2t{3,3,3,3}
4-faces84
Cells280
Faces490
Edges420
Vertices140
Vertex figure
Coxeter groupA6, [[35]], order 10080
Propertiesconvex, isotopic

The tritruncated 6-simplex is an isotopic uniform polytope, with 14 identical bitruncated 5-simplex facets.

Alternate names

  • Tetradecapeton (as a 14-facetted polypeton) (Acronym: fe) (Jonathan Bowers)[3]

Coordinates

The vertices of the tritruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,2,2). This construction is based on facets of the bitruncated 7-orthoplex.

Images

orthographic projections
Ak Coxeter plane A6 A5 A4
Graph
Symmetry [[7]](*)=[14] [6] [[5]](*)=[10]
Ak Coxeter plane A3 A2
Graph
Symmetry [4] [[3]](*)=[6]
Note: (*) Symmetry doubled for Ak graphs with even k due to symmetrically-ringed Coxter-Dynkin diagram.

Related polytopes

Isotopic uniform truncated simplices
Dim. 2 3 4 5 6 7 8
Name t{3}
Hexagon
r{3,3}
Octahedron
2t{3,3,3}
Decachoron
2r{3,3,3,3}
Dodecateron
3t{3,3,3,3,3}
Tetradecapeton
3r{3,3,3,3,3,3}
Hexadecaexon
4t{3,3,3,3,3,3,3}
Octadecazetton
Coxeter
diagram
Images
Facets {3} t{3,3} r{3,3,3} 2t{3,3,3,3} 2r{3,3,3,3,3} 3t{3,3,3,3,3,3}

Related uniform 6-polytopes

The truncated 6-simplex is one of 35 uniform 6-polytopes based on the [3,3,3,3,3] Coxeter group, all shown here in A6 Coxeter plane orthographic projections.


t0

t1

t2

t0,1

t0,2

t1,2

t0,3

t1,3

t2,3

t0,4

t1,4

t0,5

t0,1,2

t0,1,3

t0,2,3

t1,2,3

t0,1,4

t0,2,4

t1,2,4

t0,3,4

t0,1,5

t0,2,5

t0,1,2,3

t0,1,2,4

t0,1,3,4

t0,2,3,4

t1,2,3,4

t0,1,2,5

t0,1,3,5

t0,2,3,5

t0,1,4,5

t0,1,2,3,4

t0,1,2,3,5

t0,1,2,4,5

t0,1,2,3,4,5

Notes

  1. Klitzing, (o3x3o3o3o3o - til)
  2. Klitzing, (o3x3x3o3o3o - batal)
  3. Klitzing, (o3o3x3x3o3o - fe)

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Richard Klitzing, 6D, uniform polytopes (polypeta) o3x3o3o3o3o - til, o3x3x3o3o3o - batal, o3o3x3x3o3o - fe

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.