Tritetratetragonal tiling
From Wikipedia, the free encyclopedia
Tritetratetragonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex figure | 3.8.4.8 |
Schläfli symbol | - |
Wythoff symbol | 4 4 | 3 |
Coxeter diagram | |
Symmetry group | [(4,4,3)], (*443) |
Dual | Order-4-4-3 t01 dual tiling |
Properties | Vertex-transitive |
In geometry, the tritetratrigonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1(4,4,3).
Related polyhedra and tiling
Symmetry: [(4,4,3)] (*443) | [(4,4,3)]+ (443) |
[(4,4,3+)] (3*22) |
[(4,1+,4,3)] (*3232) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
t0(4,4,3) | t0,1(4,4,3) | t1(4,4,3) | t1,2(4,4,3) | t2(4,4,3) | t0,2(4,4,3) | t0,1,2(4,4,3) | sr(4,4,3) | hrr(4,4,3) | hr(4,4,3) | |
Uniform duals | ||||||||||
V(3.4)4 | V3.8.4.8 | V(4.4)3 | V3.8.4.8 | V(3.4)4 | V4.6.4.6 | V6.8.8 | V3.3.3.4.3.4 | V(4.4.3)2 | V66 |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
Wikimedia Commons has media related to Uniform tiling 3-8-4-8. |
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
- Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.