Tris

From Wikipedia, the free encyclopedia
Tris
Identifiers
CAS number 77-86-1 YesY
PubChem 6503
ChemSpider 6257 YesY
UNII 023C2WHX2V YesY
KEGG D00396 YesY
ChEBI CHEBI:9754 YesY
ChEMBL CHEMBL1200391 N
RTECS number TY2900000
ATC code B05BB03,B05XX02
Jmol-3D images Image 1
Properties
Molecular formula C4H11NO3
Molar mass 121.14 g mol−1
Appearance White crystalline powder
Density 1.328g/cm3
Melting point >175-176 °C (448-449 K)
Boiling point 219 °C; 426 °F; 492 K
Solubility in water ~50 g/100 mL (25 °C)
Acidity (pKa) 8.07
Hazards
MSDS External MSDS
R-phrases R36 R37 R38
S-phrases S26 S36
Main hazards Irritant
NFPA 704
0
2
0
Flash point Non-flammable
 N (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
Infobox references

Tris, also known as THAM (the shorter names being abbreviations of tris(hydroxymethyl)aminomethane), is an organic compound with the formula (HOCH2)3CNH2. Tris is extensively used in biochemistry and molecular biology.[1] In biochemistry, Tris is widely used as a component of buffer solutions, such as in TAE and TBE buffer, especially for solutions of nucleic acids. It is a primary amine and thus undergoes the reactions associated with typical amines, e.g. condensations with aldehydes.

Buffering features

Tris has a pKa of 8.07 at 25 °C, which implies that the buffer has an effective pH range between 7.07 and 9.07.

Buffer details

  • The pKa declines approximately 0.03 units per degree Celsius rise in temperature.[2][3]
  • Silver-containing single-junction pH electrodes (e.g., silver chloride electrode) are incompatible with Tris (Ag-tris precipitation clogs the junction). Double-junction electrodes are resistant to this problem, and non-silver containing electrodes are immune.
  • Making buffer solutions by neutralizing TrisHCl requires attention to the attendant changes in ionic strength.

Buffer inhibition

  • Tris inhibits a number of enzymes,[4][5] and therefore it should be used with care when studying proteins.

Preparation

Tris is prepared industrially in two steps from nitromethane via the intermediate (HOCH2)3CNO2. Reduction of the latter gives tris(hydroxymethyl)aminomethane.[6]

Uses

The useful buffer range for tris (7-9) coincides with the physiological pH typical of most living organisms. This, and its low cost, make tris one of the most common buffers in the biology/biochemistry laboratory. Tris is also used as a primary standard to standardize acid solutions for chemical analysis.

Tris is used to increase membrane permeability of cell membranes.[7]

Medical

Tris (usually known as THAM in this context) is used as alternative to sodium bicarbonate in the treatment of metabolic acidosis.[8]

See also

References

  1. Gomori, G., Preparation of Buffers for Use in Enzyme Studies. Methods Enzymology., 1, 138-146 (1955).
  2. El-Harakany, A.A.; Abdel Halima, F.M. and Barakat, A.O. (1984). "Dissociation constants and related thermodynamic quantities of the protonated acid form of tris-(hydroxymethyl)-aminomethane in mixtures of 2-methoxyethanol and water at different temperatures". J. Electroanal. Chem. 162 (1–2): 285–305. doi:10.1016/S0022-0728(84)80171-0. 
  3. Vega, C.A.; Butler, R.A. et al. (1985). "Thermodynamics of the Dissociation of Protonated Tris(hydroxymethy1)aminomethane in 25 and 50 wt % 2-Propanol from 5 to 45 °C". J. Chem. Eng. Data 30 (4): 376–379. doi:10.1021/je00042a003. 
  4. Desmarais, WT; et al. (2002). "The 1.20 Å resolution crystal structure of the aminopeptidase from Aeromonas proteolytica complexed with Tris: A tale of buffer inhibition". Structure 10 (8): 1063–1072. doi:10.1016/S0969-2126(02)00810-9. PMID 12176384. 
  5. Ghalanbor, Z; et al. (2008). "Binding of Tris to Bacillus licheniformis alpha-amylase can affect its starch hydrolysis activity". Protein Peptide Lett. 15 (2): 212–214. doi:10.2174/092986608783489616. PMID 18289113. 
  6. Markofsky, Sheldon B. (2000). Nitro Compounds, Aliphatic. doi:10.1002/14356007.a17_401. 
  7. Irvin, R.T.; MacAlister, T.J.; Costerton, J.W. (1981). "Tris(hydroxymethyl)aminomethane Buffer Modification of Escherichia coli Outer Membrane Permeability". J. Bacteriol 145 (3): 1397–1403. 
  8. Kallet, RH; Jasmer RM, Luce JM et al. (2000). "The treatment of acidosis in acute lung injury with tris-hydroxymethyl aminomethane (THAM)". American Journal of Respiratory and Critical Care Medicine 161 (4): 1149–1153. PMID 10764304. 
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.