Triangular prism

From Wikipedia, the free encyclopedia
Uniform Triangular prism
TypePrismatic uniform polyhedron
ElementsF = 5, E = 9
V = 6 (χ = 2)
Faces by sides3{4}+2{3}
Schläfli symbolt{2,3} or {3}x{}
Wythoff symbol2 3 | 2
Coxeter-Dynkin
Symmetry groupD3h, [3,2], (*322), order 12
Rotation groupD3, [3,2]+, (322), order 6
ReferencesU76(a)
DualTriangular dipyramid
Propertiesconvex

Vertex figure
4.4.3

In geometry, a triangular prism is a three-sided prism; it is a polyhedron made of a triangular base, a translated copy, and 3 faces joining corresponding sides.

Equivalently, it is a pentahedron of which two faces are parallel, while the surface normals of the other three are in the same plane (which is not necessarily parallel to the base planes). These three faces are parallelograms. All cross-sections parallel to the base faces are the same triangle.

As a semiregular (or uniform) polyhedron

A right triangular prism is semiregular or, more generally, a uniform polyhedron if the base faces are equilateral triangles, and the other three faces are squares. It can be seen as a truncated trigonal hosohedron, represented by Schläfli symbol t{2,3}. Alternately it can be seen as the Cartesian product of a triangle and a line segment, and represented by the product {3}x{}. The dual of a triangular prism is a triangular bipyramid.

The symmetry group of a right 3-sided prism with triangular base is D3h of order 12. The rotation group is D3 of order 6. The symmetry group does not contain inversion.

Volume

The volume of any prism is the product of the area of the base and the distance between the two bases. In this case the base is a triangle so we simply need to compute the area of the triangle and multiply this by the length of the prism:

V={\frac  {1}{2}}bhl where b is the triangle base length, h is the triangle height, and l is the length between the triangles.

Related polyhedra and tilings

Family of uniform prisms
Symmetry 3 4 5 6 7 8 9 10 11 12
[2n,2]
[n,2]
[2n,2+]
[2n+,2]















Image
As spherical polyhedra
Image



Family of cupolae
2 3 4 5 6

Digonal cupola

Triangular cupola

Square cupola

Pentagonal cupola

Hexagonal cupola
(Flat)

This polyhedron is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (3.2n.2n), and [n,3] Coxeter group symmetry.

Dimensional family of truncated polyhedra and tilings: 3.2n.2n
Symmetry
*n32
[n,3]
Spherical Euclidean Hyperbolic...
*232
[2,3]
D3h
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
P6m
*732
[7,3]
 
*832
[8,3]...
 
*32
[,3]
 
Truncated
figures

3.4.4

3.6.6

3.8.8

3.10.10

3.12.12

3.14.14

3.16.16

3.∞.∞
Coxeter
Schläfli

t{2,3}

t{3,3}

t{4,3}

t{5,3}

t{6,3}

t{7,3}

t{8,3}

t{,3}
Uniform dual figures
Triakis
figures

V3.4.4

V3.6.6

V3.8.8

V3.10.10

V3.12.12

V3.14.14

V3.16.16

V3.∞.∞
Coxeter

This polyhedron is topologically related as a part of sequence of cantellated polyhedra with vertex figure (3.4.n.4), and continues as tilings of the hyperbolic plane. These vertex-transitive figures have (*n32) reflectional symmetry.

This polyhedron is topologically related as a part of sequence of cantellated polyhedra with vertex figure (3.4.n.4), and continues as tilings of the hyperbolic plane. These vertex-transitive figures have (*n32) reflectional symmetry.

Dimensional family of expanded polyhedra and tilings: 3.4.n.4
Symmetry
*n32
[n,3]
Spherical Euclidean Hyperbolic...
*232
[2,3]
D3h
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
P6m
*732
[7,3]
 
*832
[8,3]...
 
*32
[,3]
 
Expanded
figure

3.4.2.4

3.4.3.4

3.4.4.4

3.4.5.4

3.4.6.4

3.4.7.4

3.4.8.4

3.4..4
Coxeter
Schläfli

rr{2,3}

rr{3,3}

rr{4,3}

rr{5,3}

rr{6,3}

rr{7,3}

rr{8,3}

rr{,3}
Deltoidal figure
V3.4.2.4

V3.4.3.4

V3.4.4.4

V3.4.5.4

V3.4.6.4

V3.4.7.4

V3.4.8.4

V3.4..4
Coxeter

Compounds

There are 4 uniform compounds of triangular prisms:

Compound of four triangular prisms, compound of eight triangular prisms, compound of ten triangular prisms, compound of twenty triangular prisms.

Honeycombs

There are 9 uniform honeycombs that include triangular prism cells:

Gyroelongated alternated cubic honeycomb, elongated alternated cubic honeycomb, gyrated triangular prismatic honeycomb, snub square prismatic honeycomb, triangular prismatic honeycomb, triangular-hexagonal prismatic honeycomb, truncated hexagonal prismatic honeycomb, rhombitriangular-hexagonal prismatic honeycomb, snub triangular-hexagonal prismatic honeycomb, elongated triangular prismatic honeycomb

Related polytopes

The triangular prism is first in a dimensional series of semiregular polytopes. Each progressive uniform polytope is constructed vertex figure of the previous polytope. Thorold Gosset identified this series in 1900 as containing all regular polytope facets, containing all simplexes and orthoplexes (equilateral triangles and squares in the case of the triangular prism). In Coxeter's notation the triangular prism is given the symbol 121.

k21 figures in n dimensional
En 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2×A1 E4=A4 E5=D5 E6 E7 E8 E9 = {{\tilde  {E}}}_{{8}} = E8+ E10 = E8++
Coxeter
diagram
Symmetry
(order)
[3-1,2,1]
(12)
[30,2,1]
(120)
[31,2,1]
(192)
[32,2,1]
(51,840)
[33,2,1]
(2,903,040)
[34,2,1]
(696,729,600)
[35,2,1]
()
[36,2,1]
()
Graph
Name 121 021 121 221 321 421 521 621

Four dimensional space

The triangular prism exists as cells of a number of four-dimensional uniform polychora, including:

tetrahedral prism
octahedral prism
cuboctahedral prism
icosahedral prism
icosidodecahedral prism
Truncated dodecahedral prism
Rhombi-cosidodecahedral prism
Rhombi-cuboctahedral prism
Truncated cubic prism
Snub dodecahedral prism
n-gonal antiprismatic prism
Cantellated 5-cell
Cantitruncated 5-cell
Runcinated 5-cell
Runcitruncated 5-cell
Cantellated tesseract
Cantitruncated tesseract
Runcinated tesseract
Runcitruncated tesseract
Cantellated 24-cell
Cantitruncated 24-cell
Runcinated 24-cell
Runcitruncated 24-cell
Cantellated 120-cell
Cantitruncated 120-cell
Runcinated 120-cell
Runcitruncated 120-cell

See also

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.