Transatlantic communications cable

From Wikipedia, the free encyclopedia

A transatlantic telecommunications cable is a submarine communications cable connecting one side of the Atlantic Ocean to the other.

History

When the first transatlantic telegraph cable was laid in 1858 by businessman Cyrus West Field, it operated for only a month; subsequent attempts in 1865 and 1866 were more successful. Although a telephone cable was discussed starting in the 1920s[citation needed], to be practical it needed a number of technological advances which did not arrive until the 1940s.[citation needed] Starting in 1927, transatlantic telephone service was radio-based.[citation needed]

TAT-1 (Transatlantic No. 1) was the first transatlantic telephone cable system. It was laid between Gallanach Bay, near Oban, Scotland and Clarenville, Newfoundland between 1955 and 1956 by the cable ship Monarch.[1] It was inaugurated on September 25, 1956, initially carrying 36 telephone channels. In the first 24 hours of public service there were 588 London–U.S. calls and 119 from London to Canada. The capacity of the cable was soon increased to 48 channels. TAT-1 was finally retired in 1978.

Current technology

All modern cables use fiber optic technology. Most such cables follow the great circle route from London, UK to New York City, USA because of the high-speed requirements of international financial transactions. Financial trading firms spend billions of dollars annually on high speed fiber optic communications to get an edge on trading.[2]

This route provides convenient well-supported landings in Canada near Halifax (Nova Scotia), Moncton (New Brunswick), or St. John's (Newfoundland and Labrador), and in Iceland, Belfast (Northern Ireland) or Dublin (Ireland). Many cables are monitored and controlled from such central locations rather than from the endpoints, for quicker response to problems, and because it is cheaper to hire qualified people in these less expensive locations. Iceland, furthermore, has significant advantages for communications companies as they are effectively immune from defamation lawsuits for disseminating any adverse information about public events or companies or figures, which is a key driver of day trading and arbitrage activity. Such intermediary points on the great circle route are expected to play an increasingly prominent role in these activities, if only because trading signals originating there reach both London and New York faster than any signal originating in one centre trying to reach the other.

There have been a succession of newer transatlantic cable systems. All recent systems have used fiber optic transmission, and a self-healing ring topology. Late in the 20th century, communications satellites lost most of their North Atlantic telephone traffic to these low cost, high capacity, low latency cables. This advantage only increases over time as tighter cables provide higher speed – the 2012 generation of cables drop the transatlantic latency to under 60 milliseconds, according to Hibernia Atlantic, deploying such a cable that year.[2][3]

TAT cable routes

The TAT series of cables constitute a large percentage of all North Atlantic cables. All TAT cables are joint ventures between a number of telecommunications companies, e.g. British Telecom. CANTAT cables terminate in Canada rather than in the USA.

Cable NameDate(s) in serviceTypeInitial No. of channelsFinal No. of channelsWestern endEastern end
TAT-11956–1978Galvanic3648NewfoundlandUnited Kingdom
TAT-21959–1982Galvanic4872NewfoundlandFrance
TAT-31963–1986Galvanic138276New JerseyUnited Kingdom
TAT-41965–1987Galvanic138345New JerseyFrance
TAT-51970–1993Galvanic8452,112Rhode IslandSpain
TAT-61976–1994Galvanic4,00010,000Rhode IslandFrance
TAT-71978–1994Galvanic4,00010,500New JerseyUnited Kingdom
TAT-8*1988–2002Fiber-optic40,000USAUnited Kingdom, France
TAT-91992–2004Fiber-optic80,000USA, Nova ScotiaSpain, France, United Kingdom
TAT-101992–2003Fiber-optic2 × 565 Mbit/sUSAGermany
TAT-111993–2003Fiber-optic2 × 565 Mbit/sUSAFrance
TAT-12/131996–2008Fiber-optic12 × 2.5 Gbit/sUSA × 2United Kingdom, France
TAT-142000–Fiber-optic3.2 Tbit/sUSA × 2United Kingdom, France, Netherlands, Germany, Denmark
CANTAT-11961–1986Galvanic80NewfoundlandUnited Kingdom
CANTAT-21974–1992Galvanic1,840Nova ScotiaUnited Kingdom
CANTAT-31994–2010Fiber-optic2 × 2.5 Gbit/sNova ScotiaIceland, Faroe Islands, United Kingdom, Denmark, Germany
PTAT-11989–2004Fiber-optic3 × 140 Mbit/s?New Jersey & BermudaIreland & United Kingdom

* first fiber optic cable.

Private cable routes

There are a number of private non-TAT cables.

Cable name Date(s) Nominal Capacity Latency (ms) Landings Owner
Gemini (decommissioned) 1998   under 100ms Vodafone (originally Cable & Wireless)
Apollo 2002 3.2 Tbit/s under 100ms Vodafone/Alcatel-Lucent (originally Cable & Wireless)[4]
AC-1 1998 120 Gbit/s 65ms[3] Level 3 Communications (originally Global Crossing)
Yellow/AC-2 2000 640 Gbit/s under 100ms Level 3 Communications
FLAG Atlantic 2000   under 100ms Reliance Communications
VSNL Transatlantic 2001 5.1 Tbit/s under 100ms sold by Tyco to VSNL in 2005
Hibernia Atlantic 2001 320 Gbit/s, upgraded to 10.16 Tbit/s[5] under 70ms CVC Acquisition Company
Emerald Express 2014 (scheduled)[6] 4 × 10 Tbit/s (four strand 100x100 Gbit/s) 54ms Moncton, St. John's, Iceland, Belfast, Dublin Emerald Atlantis
Hibernia Atlantic 2012 (scheduled) unknown (four strand) 59ms[3] Herring Cove (near Halifax, Canada) CVC Acquisition Company

See also

References

  1. "Being First Telephone Cable to Connect Hemispheres" Popular Mechanics, March 1954, p. 114.
  2. 2.0 2.1 Post (2011-10-09). "Building Networks for High-Speed Stock Trading - WSJ.com". Online.wsj.com. Retrieved 2013-09-18. 
  3. 3.0 3.1 3.2 "The $300m cable that will save traders milliseconds". Telegraph. Retrieved 2013-09-18. 
  4. "Submarine Cable Actions Taken PN". FCC. October 4, 2012. 
  5. "Hibernia Offers Cross-Atlantic 40G". Light Reading. August 13, 2009. 
  6. "About Us | Emerald Networks". Emerald Networks. February 14, 2013. 

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.